
Name:

CSE374 Winter 2016, Midterm Examination
February 8, 2016

Please do not turn the page until the bell rings.

Rules:

• The exam is closed-book, closed-note, closed-calculator, and closed-electronics.

• Please stop promptly at 1:20.

• There are 72 points total, distributed unevenly among 7 questions (many with multiple
parts):

Question Max Earned

1 11

2 14

3 7

4 9

5 14

6 9

7 8

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But
clearly indicate your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to
all the problems.

• There is reference material at the end of the exam.

• If you have questions, ask.

• Relax. You are here to learn.

Page 1 of 15

Name:

1. (11 points) (Shell commands) You have run a series of commands to explore your current
directory. Note that ls -F just lists directories with a slash (/) at the end to distinguish
them from regular files.

[you@midterm] pwd

/home/you

[you@midterm] ls -F

wav_to_mp3.sh logs/ music/

[you@midterm] ls -F logs

progress.log install.log data.log cache.log

boot.log graphics.log

[you@midterm] ls -F music

albums/ bulletproof.mp3 cream_on_chrome.mp3 creep.wav

delilah.mp3 el_bawaba.wav ... (many more music files)

Solve each problem individually. The starting state of the shell is always the same.

(a) You want to create a text file that lists each log file. From the current shell state, write
additional commands to create a file log_files.txt containing the name of each .log

file in the logs directory, one per line. log_files.txt should be in the logs directory.

(b) To save space, you want to delete the oldest log file. From the current shell state, write
a one-line command that deletes the .log file in the logs directory with the oldest
timestamp.

Page 2 of 15

Name:

(c) Your music files are taking up too much space, so you want to convert your wav files
to mp3 files (mp3 files use compression while wav files do not, so this will save space).
From the current shell state, write additional commands to create an .mp3 file from each
.wav file in the music directory. You can ignore any files in subdirectories of music.

You should use the Bash script wav_to_mp3.sh to perform the conversion. The script
takes two arguments. The first argument is the input wav file and the second argument
is the output directory where the script will put the mp3 version of the input file (you
can rely on the script to use an appropriate filename for the converted mp3 file). The
script will also take care of removing the input wav file if the conversion is successful.

(d) You want to make a backup copy of your music directory. From the current shell state,
write additional commands to create a new directory called music_backup and then copy
the contents of the music directory into that directory.

Solution:

(a) ls logs/*.log > logs/log_files.txt

(b) rm $(ls -t logs | tail -n 1)

(c) for file in $(ls music/*.wav); do

./wav_to_mp3.sh $file music

done

(d) cp -r music music_backup

Page 3 of 15

Name:

2. (14 points) (Bash scripting) Write a shell script chooselines that prints a number of
random lines from each provided file. The command

chooselines NUM FILE1 FILE2 ... FILEN

should print out NUM different random lines from each of the files.

To select and print out random lines from a single file, you should use the choose command.
man choose provides the following documentation:

NAME

choose -- select random lines from a text file

SYNOPSIS

choose [--head] [--label=LABEL] [-n NUM] [-p PREFIX] [--tail] FILE

DESCRIPTION

The choose utility prints random lines from FILE. By default it selects a

single line uniformly at random and prints it to standard output.

The following options are available:

--head

Print lines starting from the top of FILE instead of randomly.

--label

Prefix printed lines with the name of FILE.

-n NUM

Print NUM random lines. No line will be selected more than once.

-p prefix

Only print lines that begin with the string PREFIX.

--tail

Print lines starting from the bottom of FILE instead of randomly.

You script should meet the following specification:

1. Print an informative error message to stderr if not enough arguments are provided.

2. Print an informative error message to stderr for each file argument that does not exist.

3. Print NUM different random lines from each file that does exist.

Please write your script on the following page.

Page 4 of 15

Name:

Write your answer to problem 2 here.

Solution:

#!/bin/bash

if [$# -lt 2]; then

echo "usage: chooselines NUM FILES..." 1>&2

fi

num=$1

shift # discard first argument, shift remaining args down

for file in $@; do

if [-f $file]; then

choose -n $num $file

else

echo "chooselines: $file does not exist" 1>&2

fi

done

Page 5 of 15

Name:

3. (7 points) (regular expressions) Consider the following regular expression designed to match
amounts of money given in dollars:

\$[0-9]+

In its current form, however, this expression fails to match some of the ways a dollar amount
might be expressed. Please extend this regular expression to cover the following cases. Each
extension must continue to match everything matched by previous versions (including the
original, above).

(a) Extend the regular expression above so that it also matches negative dollar amounts.

(b) Extend the regular expression from part (a) so that it also matches dollar amounts that
include cents. Note that to be a valid dollar amount, cents must be given in exactly two
digits.

(c) Extend the regular expression from part (b) so that it also matches dollar amounts
that include commas when the amount is large enough (e.g., $1,000,000.00, $34,567,
-$999,999, $2,500.55).

Solution:

(a) -?\$[0-9]+

(b) -?\$[0-9]+(\.[0-9]{2})?

(c) -?\$[0-9]{1,3}(,[0-9]{3})*(\.[0-9]{2})?

Page 6 of 15

Name:

4. (9 points) (grep and sed) Consider the command that prints the files in the current directory
in long listing format

[you@midterm] ls -l

-rwxr-xr-x 1 you ugrad_uw 123630 Jan 22 11:55 clint.py*

-rw-r--r-- 1 you ugrad_uw 32672 Jan 9 15:44 img_a.png

-rw-r--r-- 1 you ugrad_uw 929717 Jan 1 18:58 img_a.txt

-rwxr-xr-x 1 you ugrad_uw 11488 Jan 25 12:06 line_count*

-rw-r--r-- 1 you ugrad_uw 1029 Jan 25 12:06 line_count.c

-rwxr-xr-x 1 you ugrad_uw 9872 Dec 28 17:09 moonlight*

-rwxr-xr-x 1 you ugrad_uw 9816 Dec 28 15:57 rosebud*

-rw-r--r-- 1 you ugrad_uw 4305 Feb 2 14:44 trie.c

-rw-r--r-- 1 you ugrad_uw 4209 Jan 31 19:51 trie.c~

-rw-r--r-- 1 you ugrad_uw 874 Feb 2 14:41 trie.h

-rw-r--r-- 1 you ugrad_uw 871 Jan 28 15:16 trie.h~

-rw-r--r-- 1 you ugrad_uw 14600 Feb 2 14:44 trie.o

From left to right, the columns give the following information for each file:
file permissions, number of links, owner name, owner group, file size (in bytes),
time of last modification, and filename

The whitespace between each column consists of one or more single spaces.

Give a one-line command (that includes ls -l) that prints to stdout the size of each file that
was last modified in January. You can assume filenames do not contain spaces. For example,
given the above output of ls -l, your command would print:

123630

32672

929717

11488

1029

4209

871

You may find grep and/or sed to be useful.

Solution:

ls -l | grep -E ‘Jan ’ | sed -r -e ‘s/^.*[]+([0-9]+) Jan .*$/\1/’

Page 7 of 15

Name:

5. (14 points) (C pointers) Consider the following C code in a file main.c:

#include <string.h>

int f(int *a, int *b) {

*a = *a + *b;

b = a;

}

int main(int argc, char **argv) {

int len = strlen(argv[1]);

int *p = &len;

int arr[5];

for (int i = 0; i < 5; i++) {

*(arr + i) = i;

}

int *parr = arr;

parr += 2;

*(parr + 1) = *parr;

f(parr - 1, arr + 4);

return 0;

}

This code is compiled and then run as ./main foo. Draw a picture of the arguments to main

and the rest of the local variables just before return 0; executes in main. You don’t need to
consider how memory changes over time, just what it looks like at the end of the program.
Use boxes and arrows to indicate data and pointers. Use a row of boxes to represent an array.
Draw strings as they are actually represented in memory.

Page 8 of 15

Name:

Solution:

argv • •

'.' '/' 'm' 'a' 'i' 'n' '\0'

'f' 'o' 'o' '\0'

len 3

p •

•

0 5 2 2 4arr •

parr •

Page 9 of 15

Name:

6. (9 points) (C structs) Your task is to define a struct to represent a telephone record. It
should contain a name and a phone number, including area code. How many and what type
of members you use are up to you, but you should use members that will be heap allocated
where appropriate. You should also use typedef as part of the definition to provide a concise
way to refer to the type.

After you have defined the struct, you should write a function match_name that takes a
pointer to telephone record and a string representing a name. The function should return
an integer that indicates whether the telephone record matches the provided name. You can
assume the telephone record is valid and accessing its members won’t cause a segfault or other
problems.

You may find the C library function strcmp useful. Documentation for strcmp is given below:

int strcmp (char *str1, char *str2);

DESCRIPTION

Compares the C string str1 to the C string str2.

This function starts comparing the first character of each string. If they

are equal to each other, it continues with the following pairs until the

characters differ or until a terminating null-character is reached.

RETURN VALUE

Returns an integral value indicating the relationship between the strings:

< 0 means the first character that does not match has a lower value in str1

0 means the contents of both strings are equal

> 0 means the first character that does not match has a greater value in str1

Write the definition of your struct and match_name below.

Solution:

typedef struct {

char *name;

char *number;

} PhoneRecord;

int match_name(PhoneRecord *record, char *name) {

return strcmp(record->name, name) == 0;

}

Page 10 of 15

Name:

7. (8 points) (memory model) Below is part of the implementation of a dynamically-sized array
(similar to Java’s ArrayList) of ints.

// creates and returns a new, empty vector with initial_len in initial storage

Vector* create_vector(int initial_len) {

Vector *vec = malloc(sizeof(*vec));

// data_len is the current total available storage

// (i.e., maximum number of ints data can hold)

vec->data_len = initial_len;

vec->size = 0; // size is the number of ints in the vector

// data is an array storing the ints in the vector

vec->data = calloc(initial_len, sizeof(int));

return vec;

}

// adds x to the end of vec

void add_int(Vector *vec, int x) {

if (vec->size == vec->data_len) {

int *new_data = calloc(vec->data_len * 2, sizeof(int));

for(int i = 0; i < vec->size; i++) {

new_data[i] = vec->data[i];

}

free(vec->data);

vec->data = new_data;

vec->data_len *= 2;

}

vec->data[vec->size] = x;

vec->size++;

}

// returns the int at index i in vec

// caller must ensure i < vec->size

int get_index(Vector *vec, int i) {

return vec->data[i];

}

// deallocates all memory used by vec

void destroy_vector(Vector *vec) {

free(vec);

}

After you have read the above code carefully, please answer the questions on the next page.

Page 11 of 15

Name:

(a) Describe what add_int is doing. You don’t need to go over each line, but go into enough
detail to explain how it is making Vector appear dynamically-sized (i.e., why the user of
Vector never has to worry if there is enough space in the Vector to add another int).

(b) The current implementation of Vector contains a memory leak. Identify the source of
the leak.

(c) Reimplement whatever functions from the previous page you deem necessary in order to
fix this memory leak.

Solution:

(a) add_int is doubling the size of the interal array whenever adding another int would
exceed the currently allocated storage. An array double the size of the current one is
allocated, the existing data is copied over to it, the original array is freed, and the Vector
is set to use the new array. This way, the Vector always behaves as if it has enough
space.

(b) The internal array is not freed as part of destroy_vector, but the only pointer to it,
vec, is freed.

(c) void destroy_vector(Vector *vec) {

free(vec->data);

free(vec);

}

Page 12 of 15

Name:

Reference

This is an incomplete list. Just because a command or option is documented here doesn’t
mean there is a question that uses it.

mkdir [OPTION]... DIRECTORY...

Create the DIRECTORY(ies), if they do not already exist.

-p, --parents

no error if existing, make parent directories as needed

-v, --verbose

print a message for each created directory

ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default). For each

FILE that is not a directory, ls displays its name. For each FILE that is a

directory, ls displays the names of files contained within that directory.

Sort entries alphabetically unless -t is specifed.

-R Recursively list subdirectories encountered.

-r Reverse the order of the sort to get reverse lexicographical order

or the oldest entries first.

-t Sort by time modified (most recently modified first) before sorting

the operands by lexicographical order.

rm [OPTION]... FILE...

rm removes each specified FILE. By default, it does not remove directories.

-i prompt before every removal

-r, -R, --recursive

remove directories and their contents recursively

cp [OPTION]... SOURCE DEST

or

cp [OPTION]... SOURCE... DIRECTORY

Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

-i, --interactive

prompt before overwrite

-R, -r, --recursive

copy directories recursively

head [OPTION]... [FILE]...

Print the first 10 lines of each FILE to standard output.

-n, --lines=[-]K

print the first K lines instead of the first 10; with the

leading ’-’, print all but the last K lines of each file

tail [OPTION]... [FILE]...

Print the last 10 lines of each FILE to standard output.

-n, --lines=K

output the last K lines, instead of the last 10; or use -n +K to

output starting with the Kth

Page 13 of 15

Name:

cat [OPTION]... [FILE]...

Concatenate files and print on the standard output.

echo [STRING]...

Print the STRING(s) to standard output.

shell scripting

$(cmd) substitute with the stdout from running cmd

$n nth argument ($0 is the command itself)

$# number of arguments (does not include $0)

$@ a list of all the arguments (does not include $0)

$? the exit status of the most recent command

shift discard the first argument ($1) and move the remaining arguments

down ($2 becomes $1 and so on, this affects $# and $@).

for item in list_of_things

do

...

done

if TEST

then

...

fi

tests:

[-d file] true if file exists and is a directory

[-e file] true if file exists, regardless of type

[-f file] true if file exists, and is a regular file

[-n string] true if length of string is nonzero

[-z string] true if length of string is zero

[s1 = s2] true if the strings s1 and s2 are identical.

[s1 != s2] true if the strings s1 and s2 are not identical.

[n1 -eq n2] true if integer n1 is equal to integer n2.

similarly for not equal (-ne), greater than (-gt),

and less than (-lt)

grep [OPTIONS] PATTERN [FILE...]

grep searches the named input FILEs for lines containing a match to the given

PATTERN. By default, grep prints the matching lines to standard out.

-E, --extended-regexp

Interpret PATTERN as an extended regular expression

-i, --ignore-case

Ignore case distinctions in both the PATTERN and the input files.

-v, --invert-match

Invert the sense of matching, to select non-matching lines.

-x, --line-regexp

Select only those matches that exactly match the whole line.

-o, --only-matching

Print only the matched (non-empty) parts of a matching line, with each

such part on a separate output line.

Page 14 of 15

Name:

sed [OPTIONS] COMMAND [FILE]...

Applies COMMAND to each FILE line-by-line. By default sed prints each line of

input to standard out.

-e COMMAND append the editing COMMAND to the list of commands

-n suppress printing of input lines to standard out

Substitution commands have the form: s/SEARCH_PATTERN/REPLACEMENT/[modifiers]

modifiers:

p print matched lines (necessary with -n)

g find multiple matches per line (default is first match only)

regular expressions

[abc] match one of the characters (a or b or c)

[0-9] match one of the chacters in a range

[^ \t] match one character not listed

. matches any character

(xyz) a group

\n match the nth group

* match 0 or more of the previous character or group

+ match 1 or more of the previous character or group

? match 0 or 1 of the previous character or group

{n} match the previous character or group exactly n times

{n,m} match the previous character or group at between n and m times

^ match the beginning of the line

$ match the end of the line

Page 15 of 15

