
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 26/27 – Intro to Concurrency & Parallelism

Scenario 1/3

•  Graphical user interface: The main loop alternates
between processing user input (mouse movements)
and updating and rendering shapes (suppose that
takes 100ms).

•  How do we keep the mouse from pausing every time
the processor is busy drawing the shapes?

2

Scenario 2/3

•  Social network is accessed by multiple users

3

post.write_comment(bob,	 	
	 	 	 	 	 	 	 	 	 	 	 	 “knock	 knock”)	
	
post.write_comment(alice,	 	
	 	 	 	 	 	 	 	 	 	 	 	 “who’s	 there?”)	

	
post.read_comments()	 	
	 	 	 =>	 [“who’s	 there?”]	

•  Can users see comments out of order?

Scenario 3/3

•  Adding two large matrices.

•  How can I do it K times faster?
4

Parallel vs. Concurrent

•  Precise definitions of these two terms vary depending on who
you talk to, but experts agree at least that they are different

•  Here are my preferred definitions:
•  Parallel:

–  multiple computations running simultaneously using
independent resources

–  for energy-efficiency or performance; never required for
correctness

•  Concurrent:
–  multiple computations running simultaneously
–  sometimes required for correctness (i.e. avoiding deadlock)

•  With these definitions, the set of parallel programs is a subset of
the set of concurrent programs

5

Milk analogy

•  grocer and customer, 1 shelf
•  customer gets there first; waits at shelf for milk to

appear
•  grocer comes over and waits for customer to move

away from shelf, so she can put some milk there
•  deadlock! We need concurrent access to shelf so that

the grocer may proceed even when the customer is
waiting

•  Make it a concurrent program: give the shelf two
sides, so that even if customer is waiting on one side
of the shelf, the grocer can still put milk on it

6

Parallelism for milk

•  Let’s complicate the story.
•  Suppose now to take milk or put milk on the shelf,

you need a shopping cart
•  The store only has one cart
•  So for the grocer and customer to proceed, they must

alternate their use of the cart
•  E.g., grocer uses cart to bring milk and put it on the

shelf
–  customer then takes the cart and uses it to take

milk off the shelf and bring it to the checkout
•  If the store has two carts, then the customer and

grocer can work in parallel without sharing one cart
•  the cart is like a processor

7

more terminology

•  task: a unit of work that may (or must) be run
concurrently with other tasks

•  thread: a software execution resource that can run
one task at a time

•  processor: a hardware execution resource that can
run one thread at a time

•  # of tasks determines the amount of concurrency
•  # of processors determines the amount of parallelism

8

Adding two arrays (in parallel)

•  Each element c[i] of the result is determined only by
a[i] and b[i]

•  So two tasks can compute in parallel without touching
the same data

•  see parallel_array_add.cc
9

a	 b	 c	

a	 b	 c	

c[i]	 =	 a[i]	 +	 b[i]	

Sorting an array (in parallel)

•  recursively create a new task to sort the left and right child
•  task and parent task must coordinate before merge! 10

7 1 8 0 8 3 8 2

7 1 8 0 8 3 8 2

7 1 8 0

1 7 0 8

0 1 7 8 2 3 8 8

8 3 8 2

3 8 2 8

0 1 2 3 7 8 8 8

split	

split	

sort	

merge	

merge	

Fork-join parallelism

•  create a new task with fork(); wait for a task (and its
result) with join() 11

7 1 8 0 8 3 8 2

7 1 8 0 8 3 8 2

7 1 8 0

1 7 0 8

0 1 7 8 2 3 8 8

8 3 8 2

3 8 2 8

0 1 2 3 7 8 8 8

split	

split	

sort	

merge	

merge	

fork()	

fork()	

join()	

join()	

Sharing data

•  In our fork-join mergesort, we coordinated two tasks
with join(). Think of fork() and join() as passing
ownership of data between tasks.
1.  parent task forks two children, effectively granting

ownership of a subarray to each child
2.  each child sorts its subarray (reads and writes)
3.  parent task joins both children; now it owns the

array again, and may see the results of the
childrens’ actions

4.  parent task does the merge (reads and writes)
•  This is a nice model! But are there programs that

can’t be expressed with fork-join?
12

Shared counter example

•  Suppose we have a website that returns to the user
just the next count
–  alice: GET ! 144
–  bob: GET ! 145
–  bob: GET ! 146
–  alice: GET ! 147

•  No number may be skipped and no number may be
returned twice

•  first try: shared_counter1.cc	

13

Data race!!
•  data race: when two tasks access the same data

(without synchronization) and at least one of them
does a write

counter++	
This operation really involves reading the current
counter from memory, adding one, and writing the new
value to memory.

So we might get this execution:
 Alice READS 144
 Bob READS 144
 Bob WRITES 145
 Alice WRITES 145 14

Mutual exclusion

•  We want counter++	 behave like one uninterrupted
operation.

•  This is possible by maintaining mutual exclusion of
threads touching counter.
–  This means only one thread may read or write

counter at any given time
•  second try:

–  we’ll require a thread to lock a “mutex” before it is
allowed to read and write counter	

–  if a thread tries to lock a mutex that is currently
locked, it must wait until it gets unlocked

–  shared_counter2.cc	
15

Summary
•  Concurrency and parallelism are different ideas

(regardless of your precise definition of them)
•  parallel programs are a subset of concurrent

programs where tasks do not need to be run on with
independent resources for correctness (parallelism is
for performance and energy)

•  two concurrent tasks can only safely communicate
through synchronization constructs provided by the
programming language, e.g.
–  fork and join
–  locking and unlocking the same mutex
–  transactions (we didn’t get to talk about it)
–  message passing (we didn’t get to talk about it)
–  version control (git) with merging on conflicts… 16

Final review session

•  6:45-8:45pm
•  which one?

–  Monday 3/16
–  Wednesday 3/18

•  If you plan to attend, make your voice heard. Take
the poll on the homepage about which past exam
questions to go over.

17

Course wrap-up

18

A slide from lecture #1

19

•  We have 10 weeks to move to a level well above
novice programmer:
–  Command-line tools/scripts to automate tasks
–  C programming (lower level than Java; higher than

assembly)
–  Tools for programming
–  Basic software-engineering concepts
–  Basics of concurrency

•  That’s a lot!
•  Get used to exposure, not exhaustive investigation

–  This is not intro programming anymore

just some of the things you learned
•  how to get around Linux and the command line
•  how to automate tasks with scripts
•  how to do powerful text search and processing with regular

expressions
•  what’s going on under the hood

–  how programs are stored
–  how programs are run

•  how multiple source files are turned into an executable
•  how to use an interactive debugger effectively
•  why you should be thankful when you get a

NullPointerException in Java
•  how to find memory errors and memory
•  how to work on a multi-file, multi-person code project 20

Where from here?
•  Advanced non-major CSE courses

–  CSE 373: if you liked 143/HW5 and want more
data structures and analysis of complexity. Also a
pre-req for some of the 400’s

–  CSE 417: computation theory beyond 373
–  CSE 410: if you liked learning about how

programs are stored in memory and run, this will
take you much deeper!

–  CSE 413: if you liked learning about function
pointers, const, and object-oriented programming;
or curious how programming languages work

–  CSE 414: data management is useful for any
programmer or computer user; also learn more
about parallelism and concurrency 21

