CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015
Lecture 26/27 — Intro to Concurrency & Parallelism

Scenario 1/3

« Graphical user interface: The main loop alternates
between processing user input (mouse movements)
and updating and rendering shapes (suppose that

takes 100ms).

 How do we keep the mouse from pausing every time
the processor is busy drawing the shapes?

Scenario 2/3

« Social network is accessed by multiple users

post.write comment(bob,
“knock knock”)

post.write comment(alice,
“who’s there?”)

post.read comments()
=> [“who’s there?”]

« (Can users see comments out of order?

Scenario 3/3

« Adding two large matrices.

e

« How can | do it K times faster?

Parallel vs. Concurrent

» Precise definitions of these two terms vary depending on who
you talk to, but experts agree at least that they are different

» Here are my preferred definitions:
« Parallel:

— multiple computations running simultaneously using
independent resources

— for energy-efficiency or performance; never required for
correctness

« Concurrent:
— multiple computations running simultaneously
— sometimes required for correctness (i.e. avoiding deadlock)

« With these definitions, the set of parallel programs is a subset of
the set of concurrent programs

Milk analogy

« grocer and customer, 1 shelf

« customer gets there first; waits at shelf for milk to
appear

e grocer comes over and waits for customer to move
away from shelf, so she can put some milk there

« deadlock! We need concurrent access to shelf so that
the grocer may proceed even when the customer is
waiting

« Make it a concurrent program: give the shelf two
sides, so that even if customer is waiting on one side
of the shelf, the grocer can still put milk on it

Parallelism for milk

* Let's complicate the story.

« Suppose now to take milk or put milk on the shelf,
you need a shopping cart

* The store only has one cart

« So for the grocer and customer to proceed, they must
alternate their use of the cart

* E.g., grocer uses cart to bring milk and put it on the
shelf

— customer then takes the cart and uses it to take
milk off the shelf and bring it to the checkout

 If the store has two carts, then the customer and
grocer can work in parallel without sharing one cart

 the cartis like a processor

7

more terminology

 task: a unit of work that may (or must) be run
concurrently with other tasks

 thread: a software execution resource that can run
one task at a time

e processor: a hardware execution resource that can
run one thread at a time

« # of tasks determines the amount of concurrency
« # of processors determines the amount of parallelism

Adding two arrays (in parallel)

T e —

b C

c[i] = a[i] + b[1i]

a---I'b||||]]]:|=C||||]]]:|

Each element cJi] of the result is determined only by
ali] and b[i]

So two tasks can compute in parallel without touching
the same data

see parallel_array add.cc

Sorting an array (in parallel)

split

split

sort

merge

merge

* recursively create a new task to sort the left and right child

« task and parent task must coordinate before merge!

10

Fork-join parallelism

fork() split
fork() split
sort
join() merge
join() merge

 create a new task with fork(); wait for a task (and its

result) with join() !

Sharing data

 In our fork-join mergesort, we coordinated two tasks
with join(). Think of fork() and join() as passing
ownership of data between tasks.

1. parent task forks two children, effectively granting
ownership of a subarray to each child

2. each child sorts its subarray (reads and writes)

3. parent task joins both children; now it owns the
array again, and may see the results of the
childrens’ actions

4. parent task does the merge (reads and writes)

« This is a nice model! But are there programs that

can’t be expressed with fork-join?
12

Shared counter example

« Suppose we have a website that returns to the user
just the next count

— alice: GET - 144
— bob: GET = 145
— bob: GET - 146
— alice: GET > 147

 No number may be skipped and no number may be
returned twice

 firsttry: shared_counterl.cc

13

Data race!!

e data race: when two tasks access the same data
(without synchronization) and at least one of them

does a write
counter++

This operation really involves reading the current
counter from memory, adding one, and writing the new
value to memory.

So we might get this execution:
Alice READS 144
Bob READS 144
Bob WRITES 145
Alice WRITES 145 14

Mutual exclusion

 We want counter++ behave like one uninterrupted
operation.

* This is possible by maintaining mutual exclusion of
threads touching counter.

— This means only one thread may read or write
counter at any given time

e second try:

— we'll require a thread to lock a “mutex” before it is
allowed to read and write counter

— if a thread tries to lock a mutex that is currently
locked, it must wait until it gets unlocked

- shared counter2.cc
15

Summary
« Concurrency and parallelism are different ideas
(regardless of your precise definition of them)

« parallel programs are a subset of concurrent
programs where tasks do not need to be run on with
independent resources for correctness (parallelism is

for performance and energy)

« two concurrent tasks can only safely communicate
through synchronization constructs provided by the
programming language, e.qg.

— fork and join

— locking and unlocking the same mutex

— transactions (we didn’t get to talk about it)

— message passing (we didn’t get to talk about it)
— version control (git) with merging on conflicts...

16

Final review session

* 6:45-8:45pm
* which one?
— Monday 3/16
— Wednesday 3/18

 If you plan to attend, make your voice heard. Take
the poll on the homepage about which past exam

guestions to go over.

17

Course wrap-up

18

A slide from lecture #1

« \We have 10 weeks to move to a level well above
novice programmetr:

— Command-line tools/scripts to automate tasks

— C programming (lower level than Java; higher than
assembly)

— Tools for programming
— Basic software-engineering concepts
— Basics of concurrency
« That’s a lot!
« Get used to exposure, not exhaustive investigation
— This is not intro programming anymore

19

just some of the things you learned

how to get around Linux and the command line
how to automate tasks with scripts

how to do powerful text search and processing with regular
expressions

what’s going on under the hood

— how programs are stored

— how programs are run

how multiple source files are turned into an executable
how to use an interactive debugger effectively

why you should be thankful when you get a
NullPointerException in Java

how to find memory errors and memory
how to work on a multi-file, multi-person code project 20

Where from here?

« Advanced non-major CSE courses

— CSE 373: if you liked 143/HWS and want more
data structures and analysis of complexity. Also a
pre-req for some of the 400’s

— CSE 417: computation theory beyond 373

— CSE 410: if you liked learning about how
programs are stored in memory and run, this will
take you much deeper!

— CSE 413: if you liked learning about function
pointers, const, and object-oriented programming;
or curious how programming languages work

— CSE 414: data management is useful for any
programmer or computer user; also learn more
about parallelism and concurrency 21

