
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 25 – C++ virtual functions
(Thanks to Hal Perkins)

An important example
class	 A	 {	
	 	 public:	
	 	 	 	 void	 m1()	 {	 cout	 <<	 "a1"	 <<	 endl;	 }	
	 	 	 	 virtual	 void	 m2()	 {	 cout	 <<	 "a2"	 <<	 endl;	 }	
};	
class	 B	 :	 public	 A	 {	
	 	 public:	
	 	 	 	 void	 m1()	 {	 cout	 <<	 "b1"	 <<	 endl;	 }	
	 	 	 	 void	 m2()	 {	 cout	 <<	 "b2"	 <<	 endl;	 }	
};	
	
int	 main()	 {	
	 	 B*	 b	 =	 new	 B();	
	 	 A*	 a	 =	 b;	
	 	 a-‐>m1();	
	 	 a-‐>m2();	
	 	 b-‐>m1();	
	 	 b-‐>m2();	
}	

2

In words…

•  A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

•  A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)
–  Like in Java
–  Called “dynamic dispatch”

•  A method-call is virtual if the method called is marked
virtual or overrides a virtual method
–  So “one virtual” somewhere up the base-class

chain is enough, but it’s probably better style to
repeat it

3

More on two method-call rules

•  For software-engineering, virtual and non-virtual each
have advantages:
–  Non-virtual – can look at the code to know what you’re

calling (even if subclass defines the same function)
–  Virtual – easier to extend code already written

•  The implementations of virtual/non-virtual are the same
and different:
–  Same: a methods is a function with one extra

argument: this (pointer to receiver)
–  Different:

•  Non-virtual: linker can plug in code pointer
•  Virtual: At run-time, look up code pointer via “secret

field” in the object

4

Destructors revisited

class B : public A { ... }
...
B * b = new B();
A * a = b;
delete a;

•  Will B::~B() get called (before A::~A())?
•  Only if A::~A() was declared virtual

–  Rule of thumb: Declare destructors virtual
•  (more precise: declare destructors virtual if you

use the base class polymorphically)
5

Downcasts

•  BaseClass* a = new DerivedClass() // implicit upcast
•  DerivedClass* b = (DerivedClass) a; // downcast
Old news:
•  C pointer-casts: unchecked; better know what you are doing
•  Java: checked; may raise ClassCastException (checks

“secret field”)
New news:
•  C++ has “all the above” (several different kinds of casts)

–  static_cast,	 dynamic_cast,	 reinterpret_cast…
–  Worth learning about the differences on your own

•  If you use single-inheritance and know what you are doing,
the C-style casts (same pointer, assume more about what is
pointed to) should work fine for downcasts

6

An example inspired by hw7

_w	 =	 newwin…	
MapEntity	 map[WIDTH][HEIGHT];	
	
void	 draw_map()	 {	
	 	 for	 (int	 x=0;	 x<WIDTH;	 x++)	 {	
	 	 	 	 for	 (int	 y=0;	 y<HEIGHT;	 y++)	 {	
	 	 	 	 	 	 mvaddch(_w,	 y,	 x,	 map[x][y].symbol())	
	 	 	 	 }	
	 	 }	
}	
	 	

7

Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” method.
•  Some subclass must override because there is no

definition in base class
•  Unlike Java, no need/way to mark the class specially
•  to declare a pure virtual in the base class:

class C {
 virtual t0 m(t1,t2,...,tn) = 0;
 ...
};

•  override as usual in subclass class
•  Side-comment: with multiple inheritance and pure-virtual

methods, C++ has no need for a separate notion of Java-
style interfaces (as a Class with only pure virtual
functions)

8

C++ summary

•  Lots of new syntax and gotchas, but just a few new
concepts:
–  Objects vs. pointers to objects
–  Destructors
–  virtual vs. non-virtual
–  pass-by-reference

•  more stuff as there is time:
•  why objects are better than code-pointers – a.k.a.

“coding up object-like idioms in C”
–  templates (serve a similar function as java

generics), exceptions, and operator overloading

9

Quick break

•  Why might pointers to functions be useful?

10

Function pointers

•  “Pointers to code” are almost as useful as “pointers to data”.
(But the syntax is painful in C.)

•  (Somewhat silly) example:
void app_arr(int len, int * arr, int (*f)(int)) {

 for(int k = 0; k < len; k++)
 arr[k] = (*f)(arr[k]);

}
int twox(int i) { return 2*i; }
int sqr(int i) { return i*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twox);}
void sqr_arr(int len, int* arr) { app_arr(len,arr,&sqr); }

•  Now functions are “first-class citizens”: they can be passed
around as data

•  app_arr is a higher-order function, that is, it takes a function as
an argument

11

C function-pointer syntax

•  C syntax: painful and confusing. Rough idea: The compiler
“knows” what is code and what is a pointer to code, so
you can write less than we did on the last slide:

arr[k] = (*f)(arr[k]);
 ⇒ arr[k] = f(arr[k]);

app_arr(len,arr,&twoX);
 ⇒ app_arr(len,arr,twoX);

•  Examples: Compute integral with function (pointer) to
integrate and bounds as parameters (int1.c, int2.c)

12

What is an object?

First Approximation

•  An object consists of data and methods

–  Provides the correct (conceptual) model
–  Easy to explain

•  But…
–  Doesn’t make engineering sense — we don’t want

to replicate the (same) method bodies (function
code) in every object

13

What is an object?

Second Approximation
•  An object consists of data and pointers to methods
•  The compiler adds an additional, implicit “this” parameter

to every method holding a reference to the receiver object
–  Gives the method a way to refer to the instance

variables of the correct receiver object
–  Actual method (function) code has no other connection

to any particular object
•  Avoids code duplication
•  See BAccount1.c (C version of Baccount.cpp)
But. . .
•  Still wastes space for pointers to every class function in

every object, particularly if there is relatively little instance
data, or if the class has a large number of methods

14

What is an object?
How it’s really done (C++, Java, et al):
•  There is a single “virtual function” table (vtable) for each

class containing pointers to the methods of that class.
–  This is static, constant class data – does not change

during execution; initialized at load/startup time
•  An object consists of data and a pointer to its class vtable
•  Method calls are indirect through the vtable
•  Each method still has an implicit this parameter that refers

to the receiving object
•  Avoids code duplication
•  Avoids method pointer duplication
•  Costs an indirect pointer lookup during each function call
•  Example: BAccount2.c

15

Inheritance and overriding

Basic ideas:
•  We have a vtable for every class and subclass
•  The vtable for a subclass points to the correct methods —

either ones belonging to the base class that are inherited,
or ones belonging to the subclass (added or overriding)

•  Key idea: The initial part of the vtable for a subclass points
to the methods that are inherited or overridden from the
base class in exactly the same order they appear in the
base class vtable
–  So compiled code can find the correct method at the

same offset in the vtable whether it is overridden or not
•  Use casts as needed to adjust references up and down

the inheritance chain

16

