CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015
Lecture 25 — C++ virtual functions
(Thanks to Hal Perkins)




An important example

class A {
public:
void mi() { cout <«
virtual void m2() {
}s
class B : public A {
public:
void m1() { cout <«
void m2() { cout <«

}s

int main() {
B* b = new B();
A*¥ a = b;
a->ml();
a->m2();
b->ml1();
b->m2();

"a1"
cout

n b1 n
n bz n

<<
<<

<<
<<

endl; }
"a2" << endl; }

endl; }
endl; }



In words...

* A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

« A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)

— Like in Java
— Called “dynamic dispatch”

A method-call is virtual if the method called is marked
virtual or overrides a virtual method

— So “one virtual” somewhere up the base-class
chain is enough, but it's probably better style to
repeat it



More on two method-call rules

* For software-engineering, virtual and non-virtual each
have advantages:

— Non-virtual — can look at the code to know what you're
calling (even if subclass defines the same function)

— Virtual — easier to extend code already written

* The implementations of virtual/non-virtual are the same
and different:

— Same: a methods is a function with one extra
argument: this (pointer to receiver)

— Different:
* Non-virtual: linker can plug in code pointer

 Virtual: At run-time, look up code pointer via “secret
field” in the object



Destructors revisited

class B : public A { ... }

B * b = new B();
A * a = Db;
delete a;

« WIillB::~B() get called (before A: :~A())?
« OnlyifA::~A() was declared virtual
— Rule of thumb: Declare destructors virtual

* (more precise: declare destructors virtual if you
use the base class polymorphically)



Downcasts

« BaseClass™ a = new DerivedClass() // implicit upcast

* DerivedClass* b = (DerivedClass) a; // downcast

Old news:

« C pointer-casts: unchecked; better know what you are doing

« Java: checked; may raise ClassCastException (checks
“secret field”)

New news:

« C++ has “all the above” (several different kinds of casts)
- static _cast, dynamic_cast, reinterpret_cast...
— Worth learning about the differences on your own

* |f you use single-inheritance and know what you are doing,
the C-style casts (same pointer, assume more about what is
pointed to) should work fine for downcasts



An example inspired by hw7/

_W = newwin..
MapEntity map[WIDTH][HEIGHT];

void draw_map() {
for (int x=0; X<WIDTH; x++) {
for (int y=0; y<HEIGHT; y++) {
mvaddch(_ w, y, X, map[x][y].symbol())

}
¥
}



Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” method.

Some_ §ubqlass must override because there is no
definition in base class

Unlike Java, no need/way to mark the class specially
to declare a pure virtual in the base class:
class C {
virtual t0 m(tl,t2,...,tn) = 0;

}i
override as usual in subclass class
Side-comment: with multiple inheritance and pure-virtual
methods, C++ has no need for a separate notion of Java-
style interfaces (as a Class with only pure virtual
functions)



C++ summary

« Lots of new syntax and gotchas, but just a few new
concepts:

— ODbjects vs. pointers to objects
— Destructors
— virtual vs. non-virtual
— pass-by-reference
* more stuff as there is time:

* why objects are better than code-pointers — a.k.a.
“coding up object-like idioms in C”

— templates (serve a similar function as java
generics), exceptions, and operator overloading



Quick break

« Why might pointers to functions be useful?

10



Function pointers

« “Pointers to code” are almost as useful as “pointers to data”.
(But the syntax is painful in C.)

* (Somewhat silly) example:
void app_arr(int len, int * arr, int (*f)(int)) {
for(int k = 0; k < len; k++)
arr[k] = (*f)(arr(k]);
}
int twox(int i) { return 2%i; }
int sqr(inti) {returni*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twox);}
void sqr_arr(int len, int* arr) { app_arr(len,arr,&sqr); }

« Now functions are “first-class citizens”: they can be passed
around as data

« app_arris a higher-order function, that is, it takes a function as
an argument

11



C function-pointer syntax

« (C syntax: painful and confusing. Rough idea: The compiler
“knows” what is code and what is a pointer to code, so
you can write less than we did on the last slide:

arr[k] = (*f)(arr(K])
= arr[k] = f(arr[k]);
app_arr(len,arr,&twoX);
= app_arr(len,arr,twoX);

« Examples: Compute integral with function (pointer) to
integrate and bounds as parameters (int1.c, int2.c)

12



What is an object?

First Approximation

* An object consists of data and methods
— Provides the correct (conceptual) model
— Easy to explain

 But...

— Doesn’'t make engineering sense — we don’t want
to replicate the (same) method bodies (function
code) in every object

13



What is an object?

Second Approximation
* An object consists of data and pointers to methods

« The compiler adds an additional, implicit “this” parameter
to every method holding a reference to the receiver object

— Gives the method a way to refer to the instance
variables of the correct receiver object

— Actual method (function) code has no other connection
to any particular object

« Avoids code duplication
« See BAccount1.c (C version of Baccount.cpp)
But. . .

« Still wastes space for pointers to every class function in
every object, particularly if there is relatively little instance
data, or if the class has a large number of methods

14



What is an object?

How it’ s really done (C++, Java, et al):

« There is a single “virtual function” table (vtable) for each
class containing pointers to the methods of that class.

— This is static, constant class data — does not change
during execution; initialized at load/startup time

* An object consists of data and a pointer to its class vtable
* Method calls are indirect through the vtable

« Each method still has an implicit this parameter that refers
to the receiving object

« Avoids code duplication
« Avoids method pointer duplication
« Costs an indirect pointer lookup during each function call

 Example: BAccount2.c
15



Inheritance and overriding

Basic ideas:

We have a vtable for every class and subclass

The vtable for a subclass points to the correct methods —
either ones belonging to the base class that are inherited,
or ones belonging to the subclass (added or overriding)

Key idea: The initial part of the vtable for a subclass points
to the methods that are inherited or overridden from the
base class in exactly the same order they appear in the
base class vtable

— So compiled code can find the correct method at the
same offset in the vtable whether it is overridden or not

Use casts as needed to adjust references up and down
the inheritance chain

16



