
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 24 – C++ Subclasses and Inheritance
(Thanks to Hal Perkins)

Subclassing

•  In many ways, Object-oriented programming (OOP)
is “all about” subclasses overriding methods
–  Often not what you want, but what makes OOP

fundamentally different from, say, functional
programming (Scheme, ML, Haskell, etc., cf.
CSE413)

•  C++ gives you lots more options than Java with
different defaults, so it’s easy to scream “compiler
bug” when you mean “I’m using the wrong feature”…

2

Subclassing in C++

•  Basic subclassing:
 class D : public C { ... }

•  This is public inheritance; C++ has other kinds too
(won’t cover)
–  Differences affect visibility and issues when you

have multiple superclasses (won’t cover)
–  So do not forget the public keyword

3

More on subclassing

•  Not all classes have superclasses (unlike Java with
the Object class)
–  (and classes can have multiple superclasses —

more general and complexity-prone than Java)
•  Terminology

–  Java (and others): “superclass” and “subclass”
–  C++ (and others): “base class” and “derived class”

•  Our example code: House derives from Land which
derives from Property (read the code, no time for
detailed presentation)

•  As in Java, can add fields/methods/constructors, and
override methods

4

Constructor and destructors

•  Constructor of base class gets called before constructor of
derived class
–  Default (zero-argument) constructor unless you specify

a different one after the : in the constructor
–  Initializer syntax:
Foo::Foo(…): Bar(args); it(x) { … }

•  Needed to execute superclass constructor with
arguments; also works on instance variables and is
preferred in production code (slogan: “initialization
preferred over assignment”)

•  Destructor of base class gets called after destructor of
derived class

•  So constructors/destructors really extend rather than
override, since that is typically what you want
–  Java is the same

5

Method overriding, part 1

•  If a derived class defines a method with the same
method name and argument types as one defined in
the base class (perhaps because of an ancestor), it
overrides (i.e., replaces) rather than extends

•  If you want to use the base-class code, you specify
the base class when making a method call
(class::method(…))
–  Like super in Java (no such keyword in C++

since there may be multiple inheritance)
•  NOTE: the title of this slide is part 1

–  (more later)

6

Casting and subtyping

•  An object of a derived class cannot be cast to an object of
a base class.
–  For the same reason a struct T1 {int x,y,z;}

cannot be cast to type struct T2 {int x, y;}
(different size)

•  A pointer to an object of a derived class can be cast to a
pointer to an object of a base class.
–  For the same reason a struct T1* can be cast to

type struct T2* (pointers to a location in memory)
–  (Story not so simple with multiple inheritance)

•  After such an upcast, field-access works fine (prefix), but
what do method calls mean in the presence of overriding?

7

An important example
class	
 A	
 {	

	
 	
 public:	

	
 	
 	
 	
 void	
 m1()	
 {	
 cout	
 <<	
 "a1"	
 <<	
 endl;	
 }	

	
 	
 	
 	
 virtual	
 void	
 m2()	
 {	
 cout	
 <<	
 "a2"	
 <<	
 endl;	
 }	

};	

class	
 B	
 :	
 public	
 A	
 {	

	
 	
 public:	

	
 	
 	
 	
 void	
 m1()	
 {	
 cout	
 <<	
 "b1"	
 <<	
 endl;	
 }	

	
 	
 	
 	
 void	
 m2()	
 {	
 cout	
 <<	
 "b2"	
 <<	
 endl;	
 }	

};	

	

int	
 main()	
 {	

	
 	
 B*	
 b	
 =	
 new	
 B();	

	
 	
 A*	
 a	
 =	
 b;	

	
 	
 a-­‐>m1();	

	
 	
 a-­‐>m2();	

	
 	
 b-­‐>m1();	

	
 	
 b-­‐>m2();	

}	

8

In words…

•  A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

•  A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)
–  Like in Java
–  Called “dynamic dispatch”

•  A method-call is virtual if the method called is marked
virtual or overrides a virtual method
–  So “one virtual” somewhere up the base-class

chain is enough, but it’s probably better style to
repeat it

9

