CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015
Lecture 24 — C++ Subclasses and Inheritance
(Thanks to Hal Perkins)




Subclassing

* In many ways, Object-oriented programming (OOP)
Is “all about” subclasses overriding methods
— Often not what you want, but what makes OOP

fundamentally different from, say, functional
programming (Scheme, ML, Haskell, etc., cf.

CSE413)

« C++ gives you lots more options than Java with

different defaults, so it's easy to scream “compiler
bug” when you mean “I'm using the wrong feature”...



Subclassing in C++

« Basic subclassing:
class D : public C { ... }

* This is public inheritance; C++ has other kinds too
(won’t cover)

— Differences affect visibility and issues when you
have multiple superclasses (won't cover)

— So do not forget the public keyword



More on subclassing

* Not all classes have superclasses (unlike Java with
the Object class)

— (and classes can have multiple superclasses —
more general and complexity-prone than Java)

* Terminology
— Java (and others): “superclass” and “subclass”
— C++ (and others): “base class” and “derived class’

* Qur example code: House derives from Land which
derives from Property (read the code, no time for
detailed presentation)

 As in Java, can add fields/methods/constructors, and
override methods



Constructor and destructors

« Constructor of base class gets called before constructor of
derived class

— Default (zero-argument) constructor unless you specify
a different one after the : in the constructor

— Initializer syntax:
Foo: :Foo(..): Bar(args), it(x) { .. }

* Needed to execute superclass constructor with
arguments; also works on instance variables and is
preferred in production code (slogan: “initialization
preferred over assignment”)

« Destructor of base class gets called after destructor of
derived class

« So constructors/destructors really extend rather than
override, since that is typically what you want

— Java is the same



Method overriding, part 1

 If a derived class defines a method with the same
method name and argument types as one defined in
the base class (perhaps because of an ancestor), it
overrides (i.e., replaces) rather than extends

 If you want to use the base-class code, you specify
the base class when making a method call
(class: :method(..))

— Like super in Java (no such keyword in C++
since there may be multiple inheritance)

 NOTE: the title of this slide is part 1
— (more later)



Casting and subtyping

* An object of a derived class cannot be cast to an object of
a base class.

— For the same reason a struct Tl {int x,y,z;}
cannot be cast to type struct T2 {int x, y;}
(different size)

« A pointer to an object of a derived class can be cast to a
pointer to an object of a base class.

— For the same reason a struct T1* can be castto
type struct T2* (pointers to a location in memory)

— (Story not so simple with multiple inheritance)

« After such an upcast, field-access works fine (prefix), but
what do method calls mean in the presence of overriding?



An important example

class A {
public:
void mi() { cout <«
virtual void m2() {
}s
class B : public A {
public:
void m1() { cout <«
void m2() { cout <«

}s

int main() {
B* b = new B();
A*¥ a = b;
a->ml();
a->m2();
b->ml1();
b->m2();

"a1"
cout

n b1 n
n bz n

<<
<<

<<
<<

endl; }
"a2" << endl; }

endl; }
endl; }



In words...

* A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

« A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)

— Like in Java
— Called “dynamic dispatch”

A method-call is virtual if the method called is marked
virtual or overrides a virtual method

— So “one virtual” somewhere up the base-class
chain is enough, but it's probably better style to
repeat it



