
Digression: Call-by-reference

•  In C, we know function arguments are copies
–  But copying a pointer means you still point to the

same (uncopied) thing
•  Same also works in C++; but can also use a

“reference parameter” (& character before var name)
•  Function definition: void f(int& x) {x = x+1;}
•  Caller writes: f(y)
•  But it’s as though the caller wrote f(&y) and every

occurrence of x in the function really said *x.
•  So that little & has a big meaning.

1

Class declaration/definition

•  split class into declaration (specification) and definition
–  header contains
 class	
 C	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 public:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 foo();	

	
 	
 void	
 print();	

	
 	
 	
 }	

–  .cc contains

C::foo()	
 {	

	
 	
 	
 	
 //	
 implementation…	

}	

C::print()	
 {	

	
 	
 	
 	
 //	
 implementation…	

}	
 2

Copy Constructors

•  In C, we know x=y or f(y) copies y (if a struct, then
member-wise copy)

•  Same in C++, unless a copy-constructor is defined, then
do whatever the copy-constructor says

•  A copy-constructor by definition takes a reference
parameter (else we’d need to copy the parameter, but
that’s what we’re defining!) of the same type

•  Copy constructor vs. assignment
–  Copy constructor initializes a new bag of bits (new

variable or parameter)
–  Assignment (=) replaces an existing value with a new

one – may need to clean up old state (free heap data?)

3

const
•  const can appear in many places in C++ code

–  Basically means “won’t change”, but there are
subtleties

•  Examples:
	
 const	
 int	
 default_length	
 =	
 125;	
 //	
 cannot	
 be	

reassigned	

	
 void	
 examine	
 (const	
 thing	
 &t);	
 	
 //	
 won’t	
 change	
 t	

	
 	
 void	
 examine()	
 const;	
 	
 	
 //	
 won’t	
 change	
 this	

•  const is important in real C++ code for reducing the
chance of errors

•  lack of const means the value may change but is not
required to

•  it is perfectly okay to pass a non-const object as this
to a const method or as const parameter

4

