
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Introduction to C++
(thanks to Hal Perkins)

C++

C++ is an enormous language:
•  All of C
•  Classes and objects (kind of like Java, some crucial

differences)
•  Many more little conveniences (I/O, new/delete,

function overloading, pass-by-reference, bigger
standard library)

•  Namespaces (kind of like Java packages)
•  Stuff we won’t do much of: different kinds of casts,

exceptions, templates, multiple inheritance, …
•  We will focus on a few themes rather than just a “big

bag of new features to memorize” …

2

Our focus

Object-oriented programming in a C-like language may help you
understand C and Java better?

•  We can put objects on the stack or the heap; an object is not a
pointer to an object

•  Still have to manage memory manually (but there are ways to
make it easier, like “smart pointers”)

•  Still lots of ways to HCBWKMSCOD*
•  Still distinguish header files from implementation files
•  Allocation and initialization still separate concepts, but easier to

“construct” and “destruct”
•  Programmer has more control on how method-calls work

(different defaults from Java)

*hopefully crash, but who knows – might silently corrupt other data

3

References

•  Lectures and sample code will have enough to get by
for cse374

•  Beyond that, best place to start: C++ Primer,
Lippman, Lajoie, Moo, 5th ed., Addison-Wesley, 2013

•  Every serious C++ programmer should also read
Effective C++, Meyers, 3rd ed., Addison-Wesley, 2005

•  Good online source: cplusplus.com

4

Hello World

#include <iostream>
int main() {
 // Use standard output stream cout
 // and operator << to send "Hello World”
 // and a newline (end line) to stdout
 std::cout << "Hello World" << std::endl;
 return 0;
}

•  Differences from C: “new-style” headers (no .h),
namespace access (::), I/O via stream operators, …

•  Differences from Java: not everything is in a class, any
code can go in any file, …
–  Can write procedural programs if that’s what you want

5

Compiling

•  Need a different compiler than for C; use g++ on
Linux. Example:

g++ -Wall -o hello hello.cc
•  The .cc extension is a convention (just like .c for C),

but less universal (also common: .cpp, .cxx, .C, …)
•  Uses the C preprocessor (no change there)
•  Now: A few useful tips before our real focus (classes

and objects)

6

I/O

•  Operator << takes a “ostream” and (various things)
and outputs it; returns the stream, which is why this
works:
std::cout << 3 << "hi" << f(x) << ’\n’;
–  Easier and safer than printf (type safe)

•  Operator >> takes “istream” and (various things) and
inputs into it
–  Easier and safer than scanf. Do not use pointers –
int x; std::cin >> x;

7

>> and <<

•  Can “think of” >> and << as keywords, but they are
not:
–  Operator overloading redefines them for different

pairs of types
•  In C and core C++ they mean “left-shift” and

“right-shift” (of bits); undefined for non-numeric
types

–  Lack of address-of for input (cin>>x) done with
call-by-reference (coming soon)

8

Namespaces

•  In C, all non-static functions in the program need different
names
–  Even operating systems with tens of millions of lines

•  Namespaces (cf. Java packages) let you group top-level names:
 namespace thespace { ... definitions ... }

–  Of course, then different namespaces can have the same
function names and they are totally different functions

–  Can nest them
–  Can reuse the same namespace in multiple places

•  Particularly common: in the .h and the .cc
•  Example, the whole C++ standard library is in namespace std
•  To use a function/variable/etc. in another namespace, do

 thespace::some_fun() (not . like in Java)

9

Using

•  To avoid having to always write namespaces and ::
use a using declaration

•  Example:
#include <iostream>
using namespace std;
int main() {
 cout << "Hello World" << endl;
 return 0;
}

10

Onto Classes and Objects

Like Java:
•  Fields and methods, static vs. instance, constructors
•  Method overloading (functions, operators, and

constructors too)
Not quite like Java:
•  access-modifier (e.g., private) syntax and default
•  declaration separate from implementation (like C)
•  funny constructor syntax, default parameters (e.g., ... = 0)
Nothing like Java:
•  Objects vs. pointers to objects
•  Destructors and copy-constructors
•  virtual vs. non-virtual (to be discussed; similar to Java

abstract)

11

Stack vs. heap

•  Java: cannot stack-allocate an object (only a pointer to
one; all objects are dynamically allocated on the heap)

•  C: can stack-allocate a struct, then initialize it
•  C++: stack-allocate and call a constructor (where this is

the object’s address, as always, except this is a pointer)
Thing t(10000);

•  Java: new Thing(...) calls constructor, returns heap-
allocated pointer

•  C: Use malloc and then initialized, must free exactly
once later, untyped pointers

•  C++: Like Java, new Thing(…), but can also do
new int(42). Like C must deallocate, but must use
delete instead of free. (never mix malloc/free with new/
delete!)

12

Destructors

•  An object’s destructor is called just before the space
for it is reclaimed

•  A common use: Reclaim space for heap-allocated
things pointed to (first calling their destructors)
–  But not if there are other pointers to it (aliases)?!

•  Meaning of delete x: call the destructor of pointed-
to heap object, then reclaim space

•  Destructors also get called for stack-objects (when
they leave scope)

•  Advice: Always make destructors virtual (learn why
soon)

13

Arrays

Create a heap-allocated array of objects: new A[10];
•  Calls default (zero-argument) constructor for each element
•  Convenient if there’s a good default initialization
Create a heap-allocated array of pointers to objects:

 new A*[10];
•  More like Java (but not initialized?)
•  As in C, new A() and new A[10] have type A*
•  new A* and new A*[10] both have type A**
•  Unlike C, to delete a non-array, you must write delete e
•  Unlike C, to delete an array, you must write delete [] e
•  Else HYCSBWK – delete must be told when it is deleting

an array (otherwise it tries to delete a single element)

14

Digression: Call-by-reference

•  In C, we know function arguments are copies
–  But copying a pointer means you still point to the

same (uncopied) thing
•  Same also works in C++; but can also use a

“reference parameter” (& character before var name)
•  Function definition: void f(int& x) {x = x+1;}
•  Caller writes: f(y)
•  But it’s as though the caller wrote f(&y) and every

occurrence of x in the function really said *x.
•  So that little & has a big meaning.

15

Copy Constructors

•  In C, we know x=y or f(y) copies y (if a struct, then
member-wise copy)

•  Same in C++, unless a copy-constructor is defined, then
do whatever the copy-constructor says

•  A copy-constructor by definition takes a reference
parameter (else we’d need to copy the parameter, but
that’s what we’re defining!) of the same type

•  Copy constructor vs. assignment
–  Copy constructor initializes a new bag of bits (new

variable or parameter)
–  Assignment (=) replaces an existing value with a new

one – may need to clean up old state (free heap data?)

16

const

•  const can appear in many places in C++ code
–  Basically means “doesn’t change” or “won’t

change”, but there are subtleties
•  Examples:

 const int default_length = 125; // don’t use #define
 void examine (const thing &t); // won’t change t

•  “const correctness” is important in real C++ code
–  Learn it if you do any non-trivial C++

17

Still to come

•  So far we have classes and objects (class instances)
–  Enough for many interesting types, particularly

small concrete types like strings, complex, date,
time, etc

•  For full object-oriented programming we still need
(and have) subclassing, inheritance, and related
things
–  Many similarities with Java, but more options and

different defaults

18

