
Object files (detail)
•  every .o file has:

–  code (text) segment where the function definitions
go

–  data segment where the global variables go
–  symbol table: each function definition, global

variable with a relative memory address
–  relocation table: list of lines of code that need to

be fixed (i.e., that have unresolved references)
–  (see these with nm	
 foo.o)

•  “T”: definition in the text segment
•  “D”: definition in the data segment
•  “U”: unresolved reference

1

(static) Linking

•  1. put the code and data segments from all the .o
files together into a new file.

•  2. for each unresolved reference in the relocation
table find it in one of the symbol tables and fix up the
addresses (need to use the relative memory address
with the offset of the code/data in the final
executable)

2

More about where

•  The linker and O/S don’t know anything about main or the
C library

•  That’s why gcc “secretly” links in other things
•  We can do it ourselves, but we would need to know a lot

about how the C library is organized. Get gcc to tell us:
–  gcc -v -static hello.c
–  Should be largely understandable
–  -static (puts all the code you need into a.out during

linking)
–  the secret *.o files: (they do the stuff before main gets

called, which is why gcc gives errors about main not
being defined when you have no main)

3

Archives

•  An archive is roughly a tar file, but with extra header
information about the .o files in it

•  Create with ar program (lots of features, but
fundamentally take .o files and put them in, but order
matters)

•  The semantics of passing ld an argument like -lfoo is
complicated and often not what you want:
–  Look for what: file libfoo.a (ignoring shared libraries for

now), when: at link-time, where: defaults, environment
variables, and the -L flags (analogous to -I)

–  Go through the .o files in libfoo.a in order
•  If a .o defines a needed reference, include the .o
•  Including a .o may add more needed references
•  Continue

4

The rules for linking, with archives

•  A call to ld (or gcc for linking) has .o files and -lfoo options in
left-to-right order

•  State: “Set of needed functions not defined” initially empty
•  Action for .o file:

–  Include code in result
–  Remove from set any functions defined
–  Add to set any functions used and not yet defined

•  Action for .a file: For each .o in the archive, in order
–  If it defines one or more functions in set, do all 3 things we

do for a .o file
–  Else do nothing

•  At end, if set is empty create executable, else error
•  some linkers are smart about symbols, but if the linker

processes in left-to-right order then you need to put an archive
before the .o file that needs it

5

Library gotchas

1.  Position of -­‐lfoo	
 on command-line matters (for many
linkers)
–  Only resolves references for “things to the left”
–  So -­‐lfoo	
 typically put “on the right”

2.  Cycles
–  If two .o files in a .a need each other, you’ll have to link

the library in (at least) twice!
–  If two .a files need each other, you might do -­‐lfoo	
 –
lbar	
 -­‐lfoo	
 -­‐lbar	
 -­‐lfoo	
 ...

–  (There are command-line options to do this for you, but
they are turned off by default.)

3.  If you include math.h, then you’ll need -lm
4.  naming convention: library is called libxyz.a; link it with

 -­‐lxyz	

6

Another gotcha

5. No repeated function names
–  Two .o files in an executable can’t have (public)

functions of the same name
•  Can have static functions with the same name!

(“static” on a function means not externally
visible to other .o files)

–  Can get burned by library functions you do not
know exist and don’t even need, but only if you
need another function from the same .o file

•  (Solution? 1 public function per file?!)
•  (Solution in C++: namespaces; can emulate

them in C by prefixing your function names)
7

Example: conflicting function names

8

nm myprogram.o

T: void x()

U: int y()

nm libraryZ.o

T: void x()

T: int y()

•  myprogram.o only needs y() from libraryZ.o
•  but that means libraryZ.o’s x() will also get linked.
•  Now that x() definition conflicts with my x() definition even

though I don’t need it

T: defined here
U: unresolved reference

Dynamic Linking

•  The basic static linking model has disadvantages:
–  Uses lots of disk space (copy library functions for every

application)
–  More memory when programs are running (what if the

O/S could have different processes share code?)
•  Instead, we can link later:

–  Shared libraries (link when program starts executing).
Saves disk space. O/S can share actual memory
behind your back (if/because code is immutable).

–  Dynamically linked/loaded libraries (DLL). Even later
(while program is running). Devil is in the details.

•  “DLL hell” – if the version of a library on a machine is not
the one the program was tested with…

9

Static vs dynamic

10

libc.so	

app1.o	

app2.o	

app1

app2

app1

app2

libc_nonshared.a	

libc_nonshared.a	

libc linked @ runtime

libc linked @ executable creation time

app1.o	

app2.o	

Summary

•  Things like “standard libraries” “header files” “linkers”
etc. are not magic

•  But since you rarely need fine-grained control, you
easily forget how to control typically-implicit things.
(You don’t need to know any of this until you need to
know it ☺)

•  There’s a huge difference between source code and
compiled code (a header file and an archive are quite
different)

•  The preprocessor includes header files
•  The linker includes files from archives of .o files

11

HW6

•  uintptr_t?
–  an unsigned (0 and positive) integer type, NOT a pointer

type
–  just means an integer that will be able to hold an address

value
•  void* p = …
•  uintptr_t x = p;
•  void * q = x;
•  Now q==p (no lost information)

–  use it for arithmetic and comparison of pointers
•  pointer arithmetic

p	
 +	
 i	
 =	
 p	
 +	
 sizeof(*p)*i	

	

sizeof(char) and sizeof(*q) where q is void* are 1
	

12

