
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 18 – Version control and git

Where we are

•  Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects

•  Today: Managing source code
–  Reliable backup of hard-to-replace information (i.e., sources)
–  Tools for managing concurrent and potentially conflicting

changes from multiple people
–  Tools for managing multiple sets of changes to source code

(features)
–  Ability to retrieve previous versions

•  Like make, version-control systems are typically not language-
specific.
–  Many people use version control systems for everything they

do (code, papers, slides, letters, drawings, pictures, . . .)
•  Traditional systems were best at text files (comparing

differences, etc.); newer ones work fine with others too

2

Version-control systems

•  There are plenty: scss (historical), rcs (mostly
historical), cvs (built on top of rcs), subversion, git
(much more distributed), mercurial, sourcesafe, …

•  The terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult – the basic concepts are the same

•  svn was and still is widely used
–  centralized version control (all changes happen at

the central server)
•  git and mercurial, very popular today

– distributed version control (every user has their
own copy of the repository)

3

Git basics - Fully distributed

•  A project lives in a repository
•  Git is a distributed model. Every user has their own

copy of the repository.
•  Alice commits to her copy to “save” her changes
•  Bob gets Alice’s changes by pulling from Alice’s

clone

4

Git basics - central copy

5

•  The model we will use in CSE374: A very common model of
using git is to have a shared repository called origin

•  To begin, each user clones origin’s repository
•  Alice commits to her copy to “save” her changes
•  Alice shares her changes by pushing to origin
•  Bob gets Alice’s changes by pulling from origin (instead of

directly from Alice)

Tasks

Learn the common cases; look up the uncommon ones.
In a production shop using git…
•  Create

–  a new repository/project (infrequent - once or twice a year)
–  a new branch off your working copy (days to weeks)

•  think, one feature worth of changes, e.g. “created a test
program for the trie”

–  a new commit (daily to multiple times a day)
•  think, one change, e.g. “Added a new test for word with a

single # ”

•  Working with files
–  Get changes, add or remove files, commit changes to your

working copy
–  Check version history, differences
–  pushing changes from your working copy to origin

6

Repository access

A repository can be:
•  Local: specify repository directory root via a regular

file path name url (/path/...)
•  Remote: lots of remote protocols supported (ssh,

https, …) depending on repository configuration
–  Specify user-id and machine
–  Need git and ssh installed locally
–  Need authentication (ssh password or ssh key)

•  HW6 uses ssh access to remote server
(gitlab.cs.washington.edu)

•  Feel free to experiment with private repos on gitlab,
or local repos on your own computer

7

Getting started (gitlab)
•  Set up a repository (we’ll do this step for you on hw6;

if you do it yourself you get to pick name, location
–  +New Project (on gitlab dashboard)

•  Clone a working copy of the repository to your local
machine
–  git clone git@gitlab.cs.washington.edu:path/to/

project
–  the URL above comes from the gitlab page for

your project

8

How to use git (edit a file)

#	
 edit	
 a	
 file	

vim	
 shout.c	

	

#	
 add	
 the	
 change	
 to	
 the	
 next	
 commit	

git	
 add	
 shout.c	

	

#	
 commit	
 all	
 added	
 changes	

git	
 commit	
 -­‐m	
 “changed	
 shout	
 message”	

	

#	
 At	
 this	
 point	
 we	
 have	
 stored	
 changes	
 to	

#	
 our	
 own	
 copy,	
 but	
 we	
 have	
 not	
 touched	

origin	

	

	

9

How to use git (share your changes)

#	
 Suppose	
 now	
 I	
 have	
 done	
 a	
 few	
 commits	
 and	

#	
 I	
 need	
 to	
 share	
 my	
 changes	
 with	
 my	
 co-­‐
workers.	

	

#	
 Others	
 may	
 have	
 changed	
 the	
 origin	
 copy	

while	
 I’ve	
 been	
 working	

#	
 So	
 first,	
 apply	
 and	
 changes	
 in	
 origin	

#	
 to	
 my	
 copy	

git	
 pull	

	

#	
 now	
 share	
 my	
 changes	

git	
 push	
 10

Some examples

•  Update my local copy to match origin copy
git pull

•  Make changes
 git add file.c

git mv oldfile.c newfile.c
git rm obsolete_file.c

•  Commit changes to my local copy
git commit -m ‘‘fixes bug #441’’

•  Examine your changes
git status # see un-committed changed files
git diff # see un-committed changes in files
git log # see history of commits

•  Update the origin copy to match my copy
 git push

11

Merging and Conflicts
•  Everything works great if only Alice is making changes beyond the origin copy
•  But when Alice and Bob make changes beyond the origin copy, the two versions

must be merged
–  git will merge automatically when you do a “git pull”
–  Will usually be successful if Alice and Bob changed different lines or

different files
•  But sometimes git fails to automatically merge changes

–  you have to do the merge manually, but git helps!
–  1. determine what file has the conflict

•  git status
–  2. vim foo.c

•  you’ll see something like
<<<<<<<<<<<<HEAD
for (int i=0; i<10; i++)
================
for (int i=1; i<=10; i++)
>>>>>>>>>>> master
•  change these lines to be what you actually want

–  3. add the file and commit the merge
•  git add foo.c
•  git commit

12

git gotchas

•  Do not forget to add and commit files or your group
members will be very unhappy.
–  you can check this with “git status”

•  If your group members don’t see your commits, you
need to share them
–  git pull; git push

•  Keep in the repository exactly (and only) what you
need to build the application!
–  Yes: foo.c foo.h Makefile
–  No: foo.o a.out

13

gitlab website

•  https://gitlab.cs.washington.edu
•  Files tab

–  examine all your code on the web interface
–  you can even edit files, but don’t do this for HW6

(you must learn to use the command line)
•  Commits tab

–  similar to “git log”, it shows you the history
•  Issues tab

–  create issues to track tasks
–  assign tasks to group members
–  We recommend using this!

 14

The next step: branching

•  The workflow shown previously is highly recommended for
working on HW6. Don’t use the following until you’ve mastered
those commands.

•  Git is really powerful with local branches
•  Idea: use one local branch for each isolated feature you are

working on

git checkout -b test-program
create commits…

push the new branch to origin repository
git push -u origin test-program

When ready to merge your feature, on gitlab, create a pull request,
have a group member review and merge into master branch… 15

Summary

•  Another tool for letting the computer do what it’s good
at:
–  Much better than manually emailing files, adding

dates to filenames, etc.
–  Managing versions, storing the differences
–  Keeping source-code safe
–  Preventing concurrent access, detecting conflicts

•  git: full documentation is online, free, downloadable
 also there is a book! https://progit.org/

–  Chapters 1 & 2 have most of what you’ll need
 16

17

Getting started (local repo)
•  We will use gitlab for HW6, but this slide is for reference for

when not using gitlab for hosting your git repo
•  Set up a repository

–  git init --bare /path/to/myrepo
•  Clone a working copy of the repository

–  git clone URL
–  URL for gitlab comes from the homepage of the project
–  URL if the repo is on your

•  Check out a copy of the project to a working directory
cd working-directory
svn checkout svn://path/svnrepos/proj proj

–  Working directory remembers repository location and
password for future checkin, update, etc.

•  HW6: path to repository server is on cse server – see writeup
18

