
CSE 374 
Programming Concepts & Tools 

Brandon Myers 
Winter 2015 

Lecture 17 - Build process, make 
(Thanks to Hal Perkins) 



C preprocessor summary 

•  A few easy to abuse features and a bunch of 
conventions (for overcoming C’s limitations). 
–  #include (the way you say what other definitions 

you need; cycles are fine with “the trick”) 
–  #define (parameterized macros have a few 

justifiable uses; token-based text replacement) 
–  #if... (for showing the compiler less code) 

2 



The compilation picture 

3 



Where we are 

•  We are C programmers! Onto tools... 
•  Today: basics of make 

–  in particular, the concepts 
 
 

  
Besides the slides and online Unix docs, the Stanford 

CSLib notes on Unix Programming Tools has a nice 
overview of make and other tools: 
 
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf 

4 



Onto tools 

•  The language implementation (preprocessor, 
compiler, linker, standard-library) is hardly the only 
useful thing for developing software 

•  The rest of the course: 
–  Tools (recompilation managers, version control, 

profilers; we’ve already seen a debugger) 
–  Linking 
–  A taste of C++ 

5 



make 

•  make is a classic program for controlling what gets 
(re)compiled and how. Many other such programs 
exist (e.g., ant, maven, “projects” in IDEs, ...) 

•  make has tons of fancy features, but only two basic 
ideas: 
1.  Scripts for executing commands 
2.  Dependencies for avoiding unnecessary work 

•  we will focus on the concepts… 

6 



Building software 

 Programmers spend a lot of time “building” (creating 
programs from source code) 
–  Programs they write 
–  Programs other people write 

 Programmers automate repetitive tasks. Trivial example: 
gcc -Wall -g -o widget foo.c bar.c baz.c 

 If you: 
–  Retype this every time: “shame, shame” 
–  Use up-arrow or history: “shame” (retype after logout) 
–  Have an alias or bash script: “good-thinkin” 
–  Have a Makefile: you’re ahead of us 

7 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set 
of) command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need to 

preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you 

would need an “earlier” step 
3.  If you have other outputs for the same source files (e.g., 

javadoc), it’s unpleasant to type the source file names 
multiple times 

4.  If you want to distribute source code to be built by other 
users, you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want 
to recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), 
but 5 is trickier 

8 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set of) 
command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need 

to preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you would 

need an “earlier” step 
3.  If you have other outputs for the same source files (e.g., 

javadoc), it’s unpleasant to type the source file names multiple 
times 

4.  If you want to distribute source code to be built by other users, 
you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want to 
recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), but 
5 is trickier 

9 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set 
of) command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need to 

preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you 

would need an “earlier” step 
3.  If you have other outputs for the same source files (e.g., 

javadoc), it’s unpleasant to type the source file names 
multiple times 

4.  If you want to distribute source code to be built by other 
users, you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want 
to recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), 
but 5 is trickier 

10 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set 
of) command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need to 

preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you 

would need an “earlier” step 
3.  If you have other outputs for the same source files 

(e.g., javadoc), it’s unpleasant to type the source file 
names multiple times 

4.  If you want to distribute source code to be built by other 
users, you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want 
to recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), 
but 5 is trickier 

11 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set of) 
command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need to 

preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you would 

need an “earlier” step 
3.  If you have other outputs for the same source files (e.g., 

javadoc), it’s unpleasant to type the source file names multiple 
times 

4.  If you want to distribute source code to be built by other 
users, you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want to 
recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), but 
5 is trickier 

12 



“Real” build process 

•  On larger projects, you can’t or don’t want to have one big (set of) 
command(s) that redoes everything every time you change 
anything 
1.  If gcc didn’t combine steps behind your back, you’d need to 

preprocess and compile each file, then run the linker 
2.  If another program (e.g., sed) created some C files, you would 

need an “earlier” step 
3.  If you have other outputs for the same source files (e.g., 

javadoc), it’s unpleasant to type the source file names multiple 
times 

4.  If you want to distribute source code to be built by other users, 
you don’t want to explain the build logic to them 

5.  If you have 105 to 107 lines of source code, you don’t want 
to recompile them all every time you change something 

•  A simple script handles 1–4 (use a variable for filenames for 3), but 
5 is trickier 

13 



Recompilation management 

•  The “theory” behind avoiding unnecessary 
compilation is a “dependency dag” (directed, acyclic 
graph): 

•  To create a target t, you need sources s1,s2, …,sn 
and a command c (that directly or indirectly uses the 
sources) 

•  If t is newer than every source (file-modification 
times), assume there is no reason to rebuild it 

•  Recursive building: If some source si is itself a target 
for some other sources, see if it needs to be rebuilt… 

•  Cycles “make no sense” 

14 



Dependency DAG 

15 



Dependency DAG 

16 



Theory applied to C 

•  Here is what we need to know today for C (still need 
to talk more about linking in a future lecture) 
–  Compiling a .c creates a .o – the .o depends on 

the .c and all included files (.h files, recursively/
transitively) 

–  Creating an executable (“linking”) depends on .o 
files 

–  So if one .c file changes, just need to recreate 
one .o file and relink 

–  If a header file changes, may need to rebuild more 
–  Of course, this is only the simplest situation 

18 



Dependency DAG for C 

19 



Dependency DAG for C 

20 

changed! 



Dependency DAG for C 

21 

changed! 

re-compile! 



A program 

•  What would a program (e.g., a shell script) that did 
this for you look like? It would take: 
–  a bunch of triples: target, sources, commands 

for getting the target file from source files 
–  a “current target to build” 

•  It would compute what commands needed to be 
executed, in what order, and do it (it would detect 
cycles and give an error) 

•  This is exactly what programs like make, ant, and 
build tools integrated into IDEs do! 

22 



make basics 

The “triples” are typed into a “makefile” like this: 
target:  sources	
  

   command	
  
Example: 

foo.o:	
  foo.c	
  foo.h	
  bar.h	
  
	
   	
  gcc	
  -­‐Wall	
  -­‐o	
  foo.o	
  -­‐c	
  foo.c	
  

Syntax gotchas: 
•  The colon after the target is required 
•  Command lines must start with a TAB NOT SPACES 
•  You can actually have multiple commands (executed in order); if 

one command spans lines you must end the previous line with \ 
•  Which shell-language interprets the commands? (Typically 

bash; to be sure, set the SHELL variable in your makefile.) 

23 

TAB 



Using make 

At the prompt: 
prompt% make -f nameOfMakefile aTarget 

Defaults: 
•  If no -f specified, use a file named Makefile 
•  If no target specified, use the first one in the file 
 

24 



Building software that uses make 

•  Open source usage: You can download a tarball, 
extract it, type make (four characters) and everything 
should work 

•  Actually, there’s typically a “configure” step first, for 
finding things like “where is the compiler” that 
generates the Makefile (but we won’t get into that) 
–  The mantra:  ./configure; make; make install 
–  many READMEs or INSTALLs boil down to these 

three commands 

25 



HW 6 

•  Build your own memory management library (malloc 
and free)! 

•  Two parts 
–  part I: skeleton code (header files) checked into git 

repository due 2/26 
–  part II: fully working memory manager due 3/5 

•  assignment appears tomorrow 2/19 

26 



HW 6 Project partners 
•  If you haven’t yet, find a project partner now 
•  Use today after class or the discussion board, or 

Friday in class at the latest 

•  80 students ! 40 pairs ! everyone must have a 
partner 

•  One partner in every pair submits a text file to “HW6 - 
Project partners” in the dropbox (directions are in the 
dropbox) 
–  partner choices due by Saturday night 2/21 
–  no late days on this; 1% of project score 

•  Staff will send out git repository info by Sunday 
 

27 



Midterm common errors 

28 



Midterm common shell errors 

•  stdin/out vs command line arguments vs exit code 
•  The documentation will describe what is what 

–  c1 | c2    # stdout of c1 into stdin of c2 
–  c2 `c1`   # use the stdout of c1 as arguments to c2 
–  v=`c1`    # stdout of c1 assigned to variable v 
–  c1; v=$?   # exit code of c1 assigned to variable v 
–  if cmd; then…   # if uses exit code of the provided 

command to determine true/false 
–  if [[ -f $f ]]; then…    # the [[ -f $f ]] is just the test 

command 

29 



Midterm #2c 

•  “i before e except after c”. Lines containing ie (except 
for cie) or cei. For example, it should match receive, 
sieve, thief, BUT NOT match currencies. 

• ((^|[^c])ie)|cei	
  

30 



Midterm #3a 
alice	
  	
  	
  	
  12277	
  	
  	
  0.0	
  	
  0.1	
  	
  2472836	
  6896	
  	
  	
  ??	
  	
  S	
  	
  	
  	
  Sat07PM	
  	
  	
  0:44.05	
  /usr/bin/top	
  
alice	
  	
  	
  	
  13275	
  	
  	
  0.0	
  	
  0.0	
  	
  2497564	
  3564	
  	
  	
  ??	
  	
  S	
  	
  	
  	
  Sat07PM	
  	
  	
  0:07.55	
  /usr/bin/display	
  
root	
  	
  	
  	
  	
  274	
  	
  	
  	
  	
  0.0	
  	
  0.1	
  	
  2497520	
  10072	
  	
  ??	
  	
  Ss	
  	
  	
  Sat07PM	
  	
  	
  0:14.29	
  /usr/sbin/sshd	
  
bob	
  	
  	
  	
  	
  	
  10273	
  	
  	
  0.0	
  	
  0.1	
  	
  2490020	
  	
  3321	
  ??	
  	
  S	
  	
  	
  	
  Sat07PM	
  	
  	
  0:03.11	
  /usr/bin/find	
  

… 
# the .* is greedy; limit which characters can match 
ps	
  aux	
  |	
  grep	
  alice	
  |	
  sed	
  's/.*([0-­‐9]+)/\1/’	
  
ps	
  aux	
  |	
  grep	
  alice	
  |	
  sed	
  's/[^	
  ]+[	
  ]+([0-­‐9]+)/\1/’	
  
	
  
#	
  if	
  you	
  are	
  replacing	
  whole	
  line	
  with	
  \1,	
  	
  
#	
  then	
  need	
  to	
  match	
  whole	
  line	
  
ps	
  aux	
  |	
  grep	
  alice	
  |	
  sed	
  's/[^	
  ]+[	
  ]+([0-­‐9]+)/\1/’	
  
ps	
  aux	
  |	
  grep	
  alice	
  |	
  sed	
  's/[^	
  ]+[	
  ]+([0-­‐9]+).*/\1/’	
  
	
  
	
  

31 


