
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 16 - Preprocessor revisited, make
(Thanks to Hal Perkins)

Preprocessor: The story so far…

•  We’ve looked at the basics of the preprocessor
–  #include to access declarations in header files
–  #define for symbolic constants

•  Now:
–  More details; where it fits
–  Multiple source and header files
–  A bit about macros (somewhat useful, somewhat a

warning)

2

The compilation picture

gcc does all this for you (reminder)
•  -E to only preprocess; result on stdout (rare)
•  -c to stop with .o (common for individual files in larger

program)

3

More about multiple files

Typical usage:
•  Preprocessor #include to read file containing

declarations describing code
•  Linker handles your .o files and other code

–  By default, the “standard C library”
–  Other .o and .a files
–  Whole lecture on linking and libraries later…

4

The preprocessor

•  Rewrites your .c file before the compiler gets at the code.
–  Lines starting with # tell it what to do

•  Can do crazy things (please don’t); uncrazy things are:
1. Including contents of header files
2. Defining constants and parameterized macros

•  Token-based, but basically textual replacement
•  Easy to mis-define and misuse

3. Conditional compilation
•  Include/exclude part of a file
•  Example uses: code for debugging, code for

particular computers (handling portability issues),
“the trick” for including header files only once

5

File inclusion (review)

6

linkedlist.h
(declarations)

linkedlist.c
(definitions)

typically uses #include “linkedlist.h”

webserver.c
(definitions)

uses #include “linkedlist.h”

File inclusion (review)

#include <hdr.h>
•  Search for file hdr.h in “standard include directories” and

include its contents in this place
–  Typically lots of nested includes, result not fit for

human consumption
–  Idea is simple: declaration of standard library routines

are in headers; allows correct use after declaration
#include “hdr.h”

–  Same, but first look in current directory
–  How to break your program into smaller files that can

call routines in other files
•  gcc -I option: look first in specified directories for headers

(keep paths out of your code files) (not needed for 374)

7

Header file conventions

Conventions: always follow these when writing a header file
1.  Give included files names ending in .h; only include these

header files. Never #include a .c source file
2.  Do not put functions definitions in a header file; only struct

definitions, prototypes (declarations), and other includes
3.  Do all your #includes at the beginning of a file
4.  For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#endif

(We will learn why very soon)

8

Simple macros (review)

Symbolic constants and other text
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

•  Replaces all matching tokens in rest of file
–  Knows where “words” start and end (unlike sed)
–  Has no notion of scope (unlike C compiler)
–  (Rare: can shadow with another #define or use

#undef to remove)
•  For constants, prefer global const variables

9

Some predefined macros

•  e.g., __LINE__: source file line, __FILE__ source file
name

e.g., log message that has source code information
printf("%s:%d %s\n", __FILE__, __LINE__, x)

10

Macros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; } // best (editorial opinion)

•  Replace all matching “calls” with “body” but with text of

arguments where the parameters are (just string substitution)
•  Gotchas (understand why!):

y=3; z=4; w=TWICE_AWFUL(y+z);
y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

•  Common misperception: Macros avoid performance overhead of
a function call (maybe true in 1975, not now)

•  Macros can be more flexible though (TWICE_OK works on ints
and doubles without conversions (which could round))

11

Justifiable uses

Parameterized macros are generally to be avoided (use
functions), but there are things functions cannot do:

•  generating code
–  use type names (or other code) as arguments

#define NEW_T(t,howmany) ((t*)malloc((howmany)*sizeof(t))

–  create new identifiers and write generic definitions
#define SCHEMA(t1, t2) \
typedef struct schema_##t1_##t2 { \

 t1 field1; \
 t2 field2; \

} schema_##t1_##t2;
12

Conditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use: #ifdef DEBUG // do following only when debugging

 printf(...);
 #endif

Fancier: (and another use of parameterized macros)
 #ifdef DEBUG // use DBG_PRINT for debug-printing

 #define DBG_PRINT(x) printf("%s",x)
 #else
 #define DBG_PRINT(x) // replace with nothing
 #endif

•  gcc -D FOO makes FOO “defined”

13

Back to header files

•  Now we know what this means:
#ifndef SOME_HEADER_H_
#define SOME_HEADER_H_
... rest of some_header.h ...
#endif // SOME_HEADER_H_

•  Assuming nobody else defines SOME_HEADER_H_ (convention),
the first #include "some_header.h" will do the define and include the
rest of the file, but the second and later will skip everything
–  More efficient than copying the prototypes over and over again
–  In presence of circular includes, necessary to avoid “creating”

an infinitely large result of preprocessing
•  So we always do this
•  nicer alternative is to put the following at the top of the header:

#pragma once
 (not in the language standard but is supported by most C
compilers)

14

Example of double include

15

web_utilities.h

list.h

webserver3.c

includes

includes

includes

C preprocessor summary

•  A few easy to abuse features and a bunch of
conventions (for overcoming C’s limitations).
–  #include (the way you say what other definitions

you need; cycles are fine with “the trick”)
–  #define (parameterized macros have a few

justifiable uses; token-based text replacement)
–  #if... (for showing the compiler less code)

16

