
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

C: structs, linked lists, hw5
(Thanks to Hal Perkins)

Where we are

•  We’ve seen most of the basic stuff about C, but we
still need to look at structs (aka records or objects
without methods) and linked data structures
–  Understand the code posted with today’s lecture;

we won’t have time to walk through all the details
•  Next: Rest of the C preprocessor (# stuff, macros),

building multi-file programs
•  Then: more programming tools (make, git)
•  That will set us up for the next programming project

–  Which will start right after Monday’s midterm

2

structs

•  A struct is a record (i.e., a collection of data fields)
•  A pointer to a struct is like a Java object with no methods
•  x.f is for field access. (if is x not a pointer – new!)
•  (*x).f in C is like x.f in Java. (if x is a pointer)
•  x->f is an abbreviation for (*x).f
•  There is a huge difference between a struct (value)

parameter and a pointer to a struct
•  There is a huge difference between local variables that

are structs and those that are pointers to structs
•  Again, left-expressions evaluate to locations (which can

be whole struct locations or just a field’s location)
•  Again, right-expressions evaluate to values (which can be

whole structs or just a field’s contents)

3

C parameters - revisited

•  C has a uniform rule for parameters (almost): When a
function is called, each parameter is initialized with a
copy of the corresponding argument (int, char, ptr,…)
(“pass by value”)
–  This holds even for structs! – a copy is created
–  There is no further connection between the

argument and the parameter value in the function
•  But they can point to the same thing, of course

•  But remember: if the argument is an array name, the
function parameter is initialized with a pointer to the
array argument instead of a copy of the entire array
–  Implicit array promotion (we’ve seen this)

4

struct parameters

•  A struct argument is copied (call-by-value)
•  It is far more common to use a pointer to a struct as an

argument instead of copying an entire struct
–  Gives same semantics as Java object references
–  Usually what you want – pointer to data that lives

outside the function
•  Also avoids cost of copying a possibly large object

–  But occasionally you want call-by value (small things
like complex numbers, geometric points, …)

•  Puzzle: if an argument is an array containing a single
struct, is it copied or is it promoted to a pointer?
–  What if it’s a struct containing only a single array?

5

Linked lists, trees, and friends

•  Very, very common data structures
•  Building them in C

–  Use malloc to create nodes
–  Need to use casts for “generic” types
–  Memory management issues if shared nodes
–  Usually need to explicitly free entire thing when

done
–  Shows tradeoffs between lists and arrays

•  Look at the sample code and understand what it
does/how it does it

6

HW5: T9

7

•  (see hw5.html)

8

