
CSE 374 
Programming Concepts & Tools 

Brandon Myers 
Winter 2015 

Lecture 11 – gdb and Debugging 
(Thanks to Hal Perkins) 



Hacker tool of the week (tags) 

•  Problem: I want to find the definition of a function or variable. 
Standard in most IDEs. What about vim and emacs? 

•  exuberant ctags or etags! 
•  vim: 

–  create tags file 
•  ctags *.c     (creates ./tags by default) 

–  in buffer, put cursor on symbol usage, then C-] to go to 
definition 

•  emacs: 
–  create tags file 

•  etags *.c      (creates ./TAGS by default) 
–  in buffer, put cursor on symbol usage, then M-. to go to the 

definition 
•  Lots of other code browsing tools out there… 

2 



Agenda 

•  Last bits of arrays 
•  Debuggers, particularly gdb 
•  Why? 

–  To learn general features of breakpoint-debugging 
–  To learn specifics of gdb 
–  To learn general debugging “survival skills”  

•  Skill #1: don’t panic! 
•  Skill #2: be systematic – have a plan 

–  Why now? might help on HW4! 

3 



Arrays on the stack 

•  A local variable that is an array is allocated on the 
stack (that’s why a size is required) 

•  its address is the same as that array variable’s value 
–  but they are different types 

•  see array_address.c and array_types.c 

4 



Arrays revisited 

•  “Implicit array promotion”: a variable of type T[ ] becomes a variable 
of type T* in an expression 

 
void f1(int* p) { *p = 5; } 
 
int* f2() { 

 int x[3];      /* x on stack */ 
 x[0] = 5; 

/* (&x)[0] = 5; wrong */ 
 *x = 5; 
 *(x+0) = 5; 
 f1(x); 

/* f1(&x); wrong – watch types! */ 
/* x = &x[2]; wrong – x isn’t really a pointer! */ 

 int *p = &x[2]; 
 return x;     /* wrong – dangling pointer – but type correct */ 

} 
5 



An execution monitor? 

•  What would you like to “see inside” and “do to” a 
running program? 

•  Why might all that be helpful? 
•  What are reasonable ways to debug a program? 
•  A “debugger” is a tool that lets you stop running 

programs, inspect (sometimes set) values, etc. 
–  An “MRI” for observing executing code 

6 



Issues 

•  Source information for compiled code. (Get compiler 
help) 

•  Stopping your program too late to find the problem.  
•  Trying to “debug” the wrong algorithm 
•  Trying to “run the debugger” instead of understanding 

the program 
•  Debugging C vs. Java 

–  Eliminating crashes does not make your C 
program correct 

–  Debugging Java is “easier” because (some) 
crashes and memory errors do not exist 

–  programming Java is “easier” for the same reason! 

7 



gdb 

•  gdb (Gnu debugger) is part of the standard Linux toolchain.  
•  gdb supports several languages, including C compiled by gcc. 
•  Modern IDEs have fancy GUI interfaces, which help, but 

concepts are the same. 
•  Compiling with debugging information: gcc -g 

–  Otherwise, gdb can tell you little more than the stack of 
function calls. 

•  Running gdb: gdb executable 
–  Source files should be in same directory (or use the -d flag). 

•  At prompt: run args 
•  Note: You can also inspect core files, which is why they get 

saved 
–  (Mostly useful for analyzing crashed programs after-the-fact, 

not for systematic debugging.  The original use of db.) 

8 



Basic functions 

•  backtrace 
•  frame, up, down 
•  print expression, info args, info locals 
Often enough for “crash debugging” 
Also often enough for learning how “the compiler does 

things” (e.g., stack direction, malloc policy, ...) 

9 



Breakpoints 

•  break function (or line-number or ...) 
•  conditional breakpoints (break XXX if expr) 

1.  to skip a bunch of iterations 
2.  to do assertion checking 

•  going forward: continue, next, step, finish 
–  Some debuggers let you “go 

backwards” (typically an illusion) 
•  Often enough for “binary search debugging” 
•  Also useful for learning program structure (e.g., when 

is some function called) 
•  Skim the manual for other features. 

10 



A few tricks 

•  Everyone develops their own “debugging tricks”; here 
are a few: 
–  Printing pointer values to see how big objects 

were. 
–  Always checking why a seg-fault happened 

(infinite stack and array-overflow very different) 
–  “Staring at code” even if it does not crash 
–  Printing array contents (especially last elements) 
–  . . . 

11 



Advice 

•  Understand what the tool provides you 
•  Use it to accomplish a task, for example “I want to know 

the call-stack when I get the NULL-pointer dereference” 
•  Optimize your time developing software 

–  Think of debugging as a systematic experiment to 
discover what’s wrong — not a way to randomly poke 
around.  Observation: the problem ; hypothesis: I think 
the cause is …; experiment: use debugger to verify 

•  Use development environments that have debuggers? 
•  See also: jdb for Java 
•  Like any tool, takes extra time at first but designed to save 

you time in the long run 
–  Education is an investment 

12 



Course news 

•  HW4 deadline is Thursday 2/5  
•  midterm is the following Monday 2/9 

–  will cover through C pointers and arrays 
–  review session next week 

13 



gdb summary – running programs 

•  Be sure to compile with gcc –g 
•  Open the program with: gdb <executable file> 
•  Start or restart the program: run <command args> 
•  Quit the program: kill 
•  Quit gdb: quit 
•  Reference information: help 

•  Most commands have short abbreviations 
•  <return> often repeats the last command 

–  Particularly useful when stepping through code 

14 



gdb summary – looking around 

•  bt – stack backtrace 
•  up, down – change current stack frame 
•  f <num> - change current stack frame to frame #num 
•  list – display source code (list n, list <function name>)  
•  print expression – evaluate and print expression 
•  display expression – (re-)evaluate and print 

expression every time execution pauses.   
–  undisplay – remove an expression from this 

recurring list. 
•  info locals – print all locals (but not parameters) 
•  x (examine) – look at blocks of memory in various 

formats 15 



gdb summary – breakpoints, stepping 

•  break – set breakpoint. (break <function name>, break 
<linenumber>, break <file>:<linenumber>) 

•  info break – print table of currently set breakpoints 
•  clear – remove breakpoints 
•  disable/enable – temporarily turn breakpoints off/on 

without removing them from the breakpoint table  

•  continue – resume execution to next breakpoint or end of 
program 

•  step – execute next source line 
•  next – execute next source line, but treat function calls as 

a single statement and don't step into them 
•  finish – execute to the conclusion of the current function 

–  How to recover if you meant “next” instead of “step” 

16 


