
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

C: the heap and manual memory management
(Thanks to Hal Perkins)

Communicating between frames

tolower()

fgrep ()
 buf[128]
main()

start()
 “hello”

2

int	 main(argc,	 char**	 argv)	 {	
	 	 …	
	 	 if	 (fgrep(argv[1]))…	
}	
	
int	 fgrep(char*	 pat)	 {	

	 …	
	 char	 buf[128];	
	 tolower(pat,	 buf);	
	 …	
	 c	 =	 *buf	

}	
	
void	 tolower(char*	 src,	 char*	 dest)	 {	
	 	 strcpy(dest,	 src);	
…	
}	
	
	

-bash-4.2$./fgrep hello

Communicating between frames

3

int	 main(argc,	 char**	 argv)	 {	
	 	 …	
	 	 if	 (fgrep(argv[1]))…	
}	
	
int	 fgrep(char*	 s)	 {	

	 …	
	 char*	 buf	 =	 tolower(s);	
	 …	
	 c	 =	 *buf	

}	
	
char*	 tolower(char*	 src)	 {	
	 	 char	 dest[128];	
	 	 strcpy(dest,	 src);	
…	
	 	 return	 dest;	
}	
	
	

tolower()
 dest[128]
fgrep ()

main()

start()
 “hello”

-bash-4.2$./fgrep hello

Communicating between frames

4

-bash-4.2$./fgrep hello

tolower()
 dest[128]
fgrep ()

main()

start()
 “hello”

 dest[128]

int	 main(argc,	 char**	 argv)	 {	
	 	 …	
	 	 if	 (fgrep(argv[1]))…	
}	
	
int	 fgrep(char*	 s)	 {	

	 …	
	 char*	 buf	 =	 tolower(s);	
	 …	
	 c	 =	 *buf	

}	
	
char*	 tolower(char*	 src)	 {	
	 	 char	 dest[128];	
	 	 strcpy(dest,	 src);	
…	
	 	 return	 dest;	
}	
	
	

Heap allocation

•  So far, all of our ints, pointers, and arrays, have been
stack-allocated, which in C has a huge limitation:
–  The space is reclaimed when the allocating function

returns
•  Heap-allocation separates lifetime of data from that of a

block or function call
•  Comparison: new T(...) in Java does all this:

–  Allocate space for a T (exception if out-of-memory)
–  Initialize the fields to null or 0
–  Call the user-written constructor function
–  Return a reference (hey, a pointer!) to the new object

•  And the reference has a specific type: T
•  In C, these steps are almost all separated

6

malloc, part 1

•  malloc is “just” a library function: it takes a number,
heap-allocates that many bytes and returns a pointer
to the newly-allocated memory
–  Returns NULL on failure
–  Does not initialize the memory
–  You must cast the result to the pointer type you

want
–  You do not know how much space different values

need!
•  Do not do things like malloc(17) !
•  instead malloc(17 * sizeof(char))

7

malloc, part 2

•  malloc is “always” used in a specific way:
(T*)malloc(e * sizeof(T))

•  Returns a pointer to memory large enough to hold an
array of length e with elements of type T

•  It is still not initialized (use a loop)!
–  Underused friend: calloc (takes e and sizeof(T) as

separate arguments, initializes everything to 0)
•  malloc returns an untyped pointer (void*); the cast

(T*) tells C to treat it as a pointer to a block of type T

8

Half the battle

•  We can now allocate memory of any size and have it “live”
forever

•  For example, we can allocate an array and use it
indefinitely

•  Unfortunately, computers do not have infinite memory so
“living forever” could be a problem

9

Half the battle

•  We can now allocate memory of any size and have it “live”
forever

•  For example, we can allocate an array and use it
indefinitely

•  Unfortunately, computers do not have infinite memory so
“living forever” could be a problem

•  Java solution: Conceptually objects live forever, but the
system has a garbage collector that finds unreachable
objects and reclaims their space

•  C solution: You explicitly free an object’s space by passing
a pointer to it to the library function free

•  Freeing heap memory correctly is very hard in complex
software and is the disadvantage of C-style heap-
allocation

10

Everybody wants to be free(d once)

int * p = (int*)malloc(sizeof(int));
p = NULL; /* memory leak! */
int * q = (int*)malloc(sizeof(int));
free(q);
free(q); /* HYCSBWK */
int * r = (int*)malloc(sizeof(int));
free(r);
int * s = (int*)malloc(sizeof(int));
*s = 19;
r = 17; / HYCSBWK, but maybe *s==17 ?! */

•  Problems much worse with functions:
–  f returns a pointer; (when) should f’s caller free the

pointed-to object?
–  g takes two pointers and frees one pointed-to object.

Can the other pointer be dereferenced?
11

The Rules

1.  For every run-time call to malloc there should be one
run-time call to free

2.  If you “lose all pointers” to an object, you can’t ever
call free (a leak)!

3.  If you “use an object after it’s freed” (or free it twice),
you used a dangling pointer!

•  Interesting side-note: The standard-library must
“remember” how big the object returned by malloc is
(but it won’t tell you)
–  We will explore this further…

 later ….

12

Valgrind

•  Ideally there are no memory leaks, dangling pointers,
or other bugs, but how do we check?

•  valgrind program program-arguments
–  Runs program with program-arguments
–  Catches pointer errors during execution
–  At end, prints summary of heap usage, including

details of any memory leaks at termination
•  But it really slows down execution

–  But still a fantastic diagnostic, debugging tool
•  Valgrind has other options/tools but memory check is

the default and most commonly used

13

Processes and the heap

•  Recall: a process (running program) has a single
address space (code, static/global, heap, stack)

•  When a program terminates the address space is
released by the OS
–  So any allocated memory is “reclaimed” since it no

longer exists
•  Good practices

–  OK to rely on this if appropriate, but…
–  Any data structure package that allocates storage

should normally provide routines to free it so client
code can release the space if the client wants to

14

