
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 10 – C: Pointers, pointers, pointers

Where we are

•  Last time:
–  storage, scope, lifetime of variables
–  left values and right values in assignments

•  left value must have a location in memory, right value is
just a value (number or address)

•  conversions between them
–  setting up the pointee / setting up the pointer

•  Next:
–  review how to use pointers safely
–  pointers for passing data in/out of function calls
–  arrays and pointers
–  pointer arithmetic
–  examples

2

What we learned from Binky

1.  setup the pointee AND give the pointer a pointee
–  int v; int* x = &v;

2.  dereference (*) a pointer to read (rvalue) or write
(lvalue) its pointee
–  int v = *p
–  *p = 10;

3.  assigning a pointer to another pointer makes them
point to the same pointee
–  int* x; int* y; x = y;

3

Dangling pointers

int* f(int x) {
 int *p;
 if(x) {
 int y = 3;
 p = &y; // ok
 } // ok, but p now dangling

 *p = 7; // could CRASH! It is a bug
 return p; // bad to return dangling pointer but will not crash

}
void g(int *p) { *p = 123; }
void h() {

 g(f(7)); // HOPEFULLY CRASHES! (but maybe not)
}

4

Passing arguments by reference

•  To pass data by reference, have the function take a
pointer as an argument

•  see capitalize.c

•  Reassigning a pointer argument does not change the
caller’s pointer (the pointer itself is passed by value)

•  see capitalize_use_argument.c

5

Pointers to pointers to …

•  Any level of pointer makes sense:
–  Example: argv, *argv, **argv, *(*argv+1)
–  Same example: argv, argv[0], argv[0][0], argv[0][1]

•  But &(&p) makes no sense (&p is not a left-expression, the
value is an address but the value is in no-particular-place)

•  This makes sense (well, at least it’s legal C):
void f(int x) {
 int* p = &x;
 int** q = &p;
 // ... can use x, p, *p, q, *q, **q, ...
 // x == *p == **q
}

•  Note: When playing, you can print pointers (i.e., addresses) with
%p (just numbers in hexadecimal)

6

Arrays and Pointers

•  If p has type T* or type T[] :
–  *p has type T
–  If i is an int, p+i refers to the location of an item of type

T that is i items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage1)

–  p[i] is defined to mean *(p+i)
–  if p is used in an expression (including as a function

argument) it has type T*
•  Even if it is declared as having type T[]
•  One consequence: array arguments are always

“passed by reference” (as a pointer), not “by
value” (which would mean copying the entire array
value)

•  see capitalize_array.c
7 1: usually 1 byte

Pointer arithmetic

8

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8

int	
 i[2];	
 	
 	
 	
 	
 //	
 i	
 ==	
 0x1	

	
 	

char*	
 c	
 =	
 i;	
 	
 //	
 c	
 ==	
 0x1	
 	

	

int*	
 j	
 =	
 i+1;	
 	
 //	
 j	
 ==	
 0x5	

	

char*	
 d	
 =	
 c+1;	
 	
 //	
 d	
 ==	
 0x2	

Arrays on the stack

•  A local variable that is an array is allocated on the
stack (that’s why a size is required)

•  its address is the same as that array variable’s value
–  but they are different types

•  see array_address.c and array_types.c

9

Arrays revisited

•  “Implicit array promotion”: a variable of type T[] becomes a variable
of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {

 int x[3]; /* x on stack */
 x[0] = 5;

/* (&x)[0] = 5; wrong */
 *x = 5;
 *(x+0) = 5;
 f1(x);

/* f1(&x); wrong – watch types! */
/* x = &x[2]; wrong – x isn’t really a pointer! */

 int *p = &x[2];
 return x; /* wrong – dangling pointer – but type correct */

}
10

