
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 9 – C: Locals, lvalues and rvalues, more pointers
(Thanks to Hal Perkins)

The story so far…

•  The low-level execution model of a process (one address
space)

•  Basics of C:
–  Language features: functions, pointers, arrays
–  Idioms: Array-lengths, strings with ’\0’ terminators
–  Control constructs and int guards

•  Today, more features:
–  Local declarations
–  Storage duration and scope
–  Left vs. right expressions; more pointers
–  Dangling pointers
–  Stack arrays and implicit pointers (confusing)

•  Later: structs; the heap and manual memory management
2

Storage, lifetime, and scope

•  At run-time, every variable needs space
–  When is the space allocated and deallocated?

•  Every variable has scope
–  Where can the variable be used?

•  Allocating space is separate from initializing that
space
–  Use uninitialized bytes? Hopefully crash but

undefined.
–  Unlike Java, where object references default to

null and numbers default to zero; and complains
about uninitialized local variables

3

Storage, lifetime, and scope

4

type lifetime scope notes
global
variables

before main to
after main

entire program often bad style but OK for
truly global data like
constants; kind of like public
static fields in Java

static
global
variables

before main to
after main

source file
where it
appears

kind of like private static
fields in Java; static
functions also not visible to
other files

static
local
variables

before main to
after main

function where
it appears

local
variables
(“automa
tic”)

where declared
to after the
current block

the block
where it
appears

multiple copies of same
variable (as in recursion);
like local variables in Java

lvalues vs rvalues

•  In intro courses we are usually fairly sloppy about the
difference between the left side of an assignment and the
right. To “really get” C, it helps to get this straight:
–  Law #1: Left-expressions get evaluated to locations

(addresses)
–  Law #2: Right-expressions get evaluated to values
–  Law #3: Values include numbers and pointers

(addresses)
•  The key difference is the “rule” for locations:

–  As a left-expression, a we have a location and are
done

–  As a right-expression, we get the location’s contents
•  Most things do not make sense as left expressions
•  Note: This is true in Java too

5

Conversions
•  lvalue can be implicitly converted to rvalue, by

evaluation
–  e.g. x = z; lvalue z is converted to an rvalue

•  rvalue can be explicitly converted to lvalue, by
dereference operator (*)
–  e.g., *(y+1) = 5; rvalue (y+1) is converted to lvalue
–  using dereference on a non pointer type results in

a type error
•  lvalue can be explicitly converted to rvalue, by

address-of operator (&)
–  e.g., mypointer = &x; lvalue x is converted to

rvalue
–  using address-of on an rvalue is an error 6

Rvalue to lvalue conversion example

•  int *y;
•  …
•  *(y+4) = 1

7

0x10(y) 0x18 0x1c 0x20 0x24 0x28 0x2c
0x1c 1

y points to location 0x1c. 0x1c + 4*4 = 0x2c (4*4 because y is an
integer pointer)

Function arguments

•  Storage and scope of arguments is like for local
variables

•  But initialized by the caller (“copying” the value)
•  So assigning to an argument has no affect on the

caller
•  But assigning to the space pointed-to by an argument

does affect the caller

8

int f(int x) {
 x = x + 1;
 return x;
}

Function arguments

•  Storage and scope of arguments is like for local
variables

•  But initialized by the caller (“copying” the value)
•  So assigning to an argument has no affect on the

caller
•  But assigning to the space pointed-to by an argument

does affect the caller

9

void g(int* z) {
 *z = *z + 1;
}

int f(int x) {
 x = x + 1;
 return x;
}

int y = 10;
int fy = f(y);
// y = 10
g(&y);
// y = 11

0x10 0x14 0x18(z) 0x1c 0x20 0x24 0x28 0x2c 0x30(y)

0x30 10 11

Pointer video

•  Binky

10

Pointers to pointers to …

•  Any level of pointer makes sense:
–  Example: argv, *argv, **argv
–  Same example: argv, argv[0], argv[0][0]

•  But &(&p) makes no sense (&p is not a left-expression,
the value is an address but the value is in no-particular-
place)

•  This makes sense (well, at least it’s legal C):
void f(int x) {
 int*p = &x;
 int**q = &p;
 ... can use x, p, *p, q, *q, **q, ...
}

•  Note: When playing, you can print pointers (i.e.,
addresses) with %p (just numbers in hexadecimal)

11

Dangling pointers

int* f(int x) {
 int *p;
 if(x) {
 int y = 3;
 p = &y; // ok
 } // ok, but p now dangling

 *p = 7; // could CRASH! It is a bug
 return p; // bad to return dangling pointer but will not crash

}
void g(int *p) { *p = 123; }
void h() {

 g(f(7)); // HOPEFULLY CRASHES! (but maybe not)
}

12

Arrays and Pointers

•  If p has type T* or type T[] :
–  *p has type T
–  If i is an int, p+i refers to the location of an item of type

T that is i items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage)

–  p[i] is defined to mean *(p+i)
–  if p is used in an expression (including as a function

argument) it has type T*
•  Even if it is declared as having type T[]
•  One consequence: array arguments are always

“passed by reference” (as a pointer), not “by
value” (which would mean copying the entire array
value)

13

Arrays revisited

•  “Implicit array promotion”: a variable of type T[] becomes a variable
of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {

 int x[3]; /* x on stack */
 x[0] = 5;

/* (&x)[0] = 5; wrong */
 *x = 5;
 *(x+0) = 5;
 f1(x);

/* f1(&x); wrong – watch types! */
/* x = &x[2]; wrong – x isn’t really a pointer! */

 int *p = &x[2];
 return x; /* wrong – dangling pointer – but type correct */

}
14

