
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 4 – Shell Variables, More Shell Scripts
(Thanks to Hal Perkins)

test / if

•  Recall from last lecture:
•  test (not built-in) takes arguments that look like a

predicate
•  doesn’t do anything other than return an exit code

•  if … then …fi (built-ins)
•  if <command>; then
<commands>
fi

2

Where we are

•  We understand most of the bash shell and its
“programming language”. Final pieces we’ll consider:
–  Shell variables

•  Defining your own
•  Built-in meanings
•  Exporting

–  Arithmetic
–  For loops

•  End with:
–  A long list of gotchas (some bash-specific; some

common to shells)
–  Why long shell scripts are a bad idea, etc.

3

Shell variables

•  We already know a shell has state: current working
directory, streams, users, aliases, history.

•  Its state also includes shell variables that hold strings.
–  Always strings even if they are “123” – but you can do

math
•  Features:

–  Change variables’ values: foo=blah
–  Add new variables: foo=blah or foo=
–  Use variable: ${foo} (braces sometimes optional)
–  Remove variables: unset foo
–  See what variables “are set”: set

•  Omitted feature: Functions and local variables (see bash
manual 3.3)

•  Roughly “all variables are global (visible everywhere)”

4

Why variables?

•  Variables are useful in scripts, just like in “normal”
programming.

•  “Special” variables affect shell operation. 3 of the
most common:
–  PATH (tells shell where to find programs)
–  PS1 (determines the shell prompt)
–  HOME (determines what ~ means)

•  Some variables make sense only when the shell is
reading from a script:
–  $#, $n (where n is an integer), $@, $*, $?

5

Export

•  If a shell runs another program (perhaps a bash script), does the
other program “see the current variables that are set”?
–  i.e., are the shell variables part of the initial environment of

the new program?
•  It depends.

–  export foo – yes it will see value of foo
–  export -n foo – no it will not see value of foo
–  Default is no

•  If the other program sets an exported variable, does the outer
shell see the change?

•  No.
–  Somewhat like “call by value” parameters in conventional

languages
–  Remember, each new program (and shell) is launched as a

separate processs with its own state, environment, etc.
•  export -p OR printenv – see all exported variables

6

Arithmetic

•  Variables are strings, so k=$i+$j is not addition
•  But ((k=$i+$j)) is (and in fact the $ is optional here)
•  So is let k="$i + $j”
•  The shell converts the strings to numbers, silently

using 0 when a variable is empty

7

For loops

•  Syntax:
for v in w1 w2 ... wn
do
 body

done
•  Execute body n times, with v set to wi on ith

iteration(Afterwards, v=wn)
•  Why so convenient?

–  Use a filename pattern after in
–  Use list of argument strings after in: "$@”

•  Not “$*” – that doesn’t handle arguments with
embedded blanks the way you (usually) want

•  for a range of integers look at “man seq”
8

Quoting

•  Does x=* set x to string-holding-asterisk or string-holding-
all-filenames?

•  If $x is *, does ls $x list all-files or file named asterisk?
•  Are variables expanded in double-quotes? single-quotes?
•  Could consult the manual, but honestly it’s easier to start a

shell and experiment. For example:
x="*"
echo x
echo $x
echo "$x" (Double quotes suppress some substitutions)
echo ’$x’ (Single quotes suppress all substitutions)
...

9

Gotchas: A very partial list

1.  Typo in variable name on left: create new variable
oops=7

2.  Typo in variable use: get empty string – ls $oops
3.  Use same variable name again: clobber other use

HISTFILE=uhoh
4.  Spaces in variables: use double-quotes if you mean

“one word”
5.  Non-number used as number: end up with 0
6.  set f=blah: apparently does nothing (assignment in

csh)
7.  Using ls to list files to iterate over in for loop (just use

string expansion *)
8.  Many, many more…

10

Shell programming revisited

•  How do Java programming and shell programming compare?
•  The shell:

–  “shorter”
–  convenient file-access, file-tests, program-execution, pipes
–  crazy quoting rules and syntax
–  also interactive

•  Java:
–  verbose syntax
–  none of the previous gotchas
–  local variables, modularity, typechecking, array-checking, . . .
–  real data structures, libraries, more common syntax

•  Rough rule of thumb: Don’t write shell scripts over 200 lines?

11

Treatment of strings

•  Suppose foo is a variable that holds the string hello

•  Moral: In Java, variable-uses are easier than string-
constants

•  Opposite in Bash
•  Both biased toward common use

Java Bash
Use variable (get “hello”) foo $foo
The string foo “foo” foo
Assign variable foo = hi foo=hi
Concatenation foo + “oo” ${foo}oo
Convert to number library call silent and implicit

12

More on shell programming

•  Metapoint: Computer scientists automate and end up
accidentally inventing (bad) programming languages. It’s
like using a screwdriver as a pry bar.

•  HW3 in part, will be near the limits of what seems
reasonable to do with a shell script (and we’ll end up
cutting corners as a result)

•  There are plenty of attempts to get “the best of both
worlds” in a scripting language: Perl, Python, Ruby, . . .

•  Personal opinion: it raises the limit to 1000 or 10000 lines?
Gets you hooked on short programs.

•  Picking the bash shell was a conscious decision to
emphasize the interactive side and because it is
commonly used despite its terribleness

•  Next: Regular expressions, grep, sed, others.

13

Bottom line

•  Never do something manually if writing a script would
save you time

•  Never write a script if you need a large, robust piece
of software

•  Some programming languages (ruby, python, perl) try
to give the “best of both worlds” – you now have seen
two extremes that don’t (Java and bash)

14

