
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2013

Lecture 3 – I/O Redirection, Shell Scripts
(thanks to Hal Perkins)

It’s Friday: Hacker tool of the week!

•  tmux – terminal multiplexor
•  problem: I got disconnected from my ssh session with

klaatu and lost all my progress! !
•  solution: tmux! ☺

•  problem: I need to see my code in vim/emacs and
test it at the same time

•  solution: run commands from vim/emacs OR tmux!
•  C-b “ or C-b % (new pane)
•  C-b c (create new window) C-b n C-b p (navigate

windows)
•  many more commands and easily customizable! 2

Standard I/O streams and redirection

•  every command has 3 standard streams: stdin (0, input),
stdout (1, output), stderr (2, error messages)

•  Default is keyboard (stdin), screen (stdout, stderr)
•  Can redirect to a file with <, >

echo hello >there
cat <there
cat <there >here

•  Can “pipe” output (stdout) of one command to input (stdin)
of another with |

 man bash | less
•  Redirection is done entirely in the shell – programs are

oblivious; they just use streams stdin, stdout, stderr

3

File redirection in (more) detail

•  some common usages:
–  redirect input: cmd < file
–  redirect output, overwriting file: cmd > file
–  redirect output, appending to file: cmd >> file
–  redirect error output: cmd 2> file
–  redirect output and error output to file: cmd &> file

See bash manual sec. 3.6 for other variations
•  Useful special file: /dev/null

–  Immediate eof if read; data discarded if written
•  << MYFLAG … is typed input up to occurrence of

“MYFLAG”

4

Pipes
 cmd1 | cmd2

•  Change the stdout of cmd1 and the stdin of cmd2 to be the same, new
stream!

•  Very powerful idea:
–  In the shell, larger command out of smaller commands
–  To the user, combine small programs to get more usefulness

•  philosophy: Each program can do one thing and do it well!
•  Examples:

–  ps aux | less
–  djpeg me.jpg | pamscale -xysize 100 150 | cjpeg > thumb.jpg

•  redirect error to the same place output is directed to:
•  cmd 2>&1 | grep ERROR
•  stdout(1) goes to the pipe, so 2>&1 makes stderr(2) go to the pipe

–  (you’ll need to add djpeg/cjpeg to your copy of the vm if you want to run the last example. Both have
been added to klaatu.)

•  this works on the CSE VM
•  sudo yum install libjpeg-turbo-utils

5

Combining commands

•  Combining simpler commands to form more complicated
ones is very programming-like. In addition to pipes, we
have:

 cmd1 ; cmd2 (sequence)
 cmd1 || cmd2 (or, using int result – the “exit status”

 – run cmd2 if cmd1 “fails”)
•  Example: do_something || echo “Didn’t work!”

 cmd1 && cmd2 (and, like or; run cmd2 only if cmd1
 “succeeds” – i.e., “returns” 0)
•  Example: check_if_ok && launch_missles

 cmd1 `cmd2` (use output of cmd2 as input to cmd1).
Note the backtick (`)

•  example: mkdir `whoami`A`whoami`

6

(Non)-alphabet soup

•  List of characters with special (before program/built-in
runs) meaning is growing: ‘ ! % & * ~ ? [] " ’ \ > < | $
(and we’re not done)

•  If you ever want these characters or (space) in
something like an argument, you need some form of
escaping; each of " ’ \ have slightly different meaning

•  First approximation:
–  "stuff" treats stuff as a single argument but allows

some substitutions for $variables
example: cat "to-do list" # filename with spaces(!)

–  ’stuff’ suppresses basically all substitutions and
treats stuff literally

7

Shell Expansion and Programs

•  Important but sometimes overlooked point: shell
metacharacter expansion, I/O redirection, etc. are
done by the shell before a program is launched
–  The program usually never knows if stdin/stdout

are connected to the keyboard/screen or files
–  Program doesn’t see original command line – just

expanded version as a list of arguments
–  Expansion is uniform for all programs since it’s

done in one place – the shell

8

Shell as a programming language

•  The shell is an interpreter for a strange programming
language (of the same name). So far:
–  “Shell programs” are program names and arguments
–  The interpreter runs the program (passing it the

arguments), prints any output, and prints another
prompt. The program can affect the file-system, send
mail, open windows, etc.

–  “Builtins” such as cd, exit give directions to the
interpreter.

–  The shell interprets lots of funny characters differently,
rather than pass them as options to programs.

•  It’s actually even more complicated:
–  (two kinds of) variables
–  some programming constructs (conditionals, loops,

etc.)

9

Toward Scripts…

•  A running shell has a state, i.e., a current
–  working directory
–  user
–  collection of aliases
–  History
–  Streams (files, etc.)
–  ...

•  We learned that source can execute a file’s contents,
which can affect the shell’s state.

10

Running a script

•  What if we want to run a bunch of commands without
changing our shell’s state?

•  Answer: start a new shell (sharing our stdin, stdout,
stderr), run the commands in it, and exit

•  Better answer: Automate this process
–  A shell script as a program (user doesn’t even

know it’s a script).
–  Now we’ll want the shell to end up being a

programming language
–  A convenient programming language for things

you would do at the shell (running programs,
manipulating text, manipulating files)

–  A bad programming language for other things 11

Writing a script

•  Make the first line exactly: #!/bin/bash
•  Give yourself “execute” permission on the file (chmod +x)
•  Run it

–  Probably need to precede filename with ./ if current
directory isn’t normally searched for commands (i.e., ‘.’
is not normally included in $PATH – and it shouldn’t be
for security reasons)

•  Note: The shell consults the first line of the file:
–  If a shell-program is there, launch it and run the script

(similar trick works for perl, python, etc.)
–  Else if it’s a “real executable” run it (more later)

•  Example: listhome

12

More expressions

•  bash expressions can be:
–  math or string tests (e.g., -lt)
–  logic (&&, ||, !) (if you use double-brackets)
–  file tests (very common; see Pocket Guide p.198 or

“test” in the index)
–  math (if you use double-parens)

•  Gotcha: parens and brackets must have spaces before
and after them!

•  Example: dcdls (double cd and ls) can check that
arguments are directories

•  Exercise: script that replaces older file with newer one
•  Exercise: make up your own

13

Accessing arguments

•  The script accesses the arguments with $i to get the ith
one (name of program is $0)
–  Example: make thumbnail1

•  Also very useful for homework: shift (manual Section 4.1)
–  Example: countdown

•  We would like optional arguments and/or usage
messages. Need:
–  way to find out the number of arguments
–  a conditional
–  some stuff we already have
–  Example: make thumbnail2

14

Review

•  The shell runs programs and builtins, interpreting
special characters for filenames, history, I/O
redirection

•  Some builtins like “if” support rudimentary
programming

•  A script is a program to its user, but is written using
shell commands

•  So the shell language is okay for interaction and
“quick-and-dirty” programs, making it a strange beast.

•  For both, shell variables are extremely useful

15

Preview: Variables

i=17 # no spaces
set
echo $i
set | grep i
echo $i
unset i
echo $i
f1=$1

•  (The last is very useful in scripts before shifting)
•  Enough for next homework (arithmetic, conditionals, shift,

variables, redirection, ...)
•  Gotcha: using undefined variables (e.g., because of typo)

doesn’t fail (just the empty string)
–  tip: set –o nounset

16

