
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 20 – C++ Subclasses and Inheritance

Subclassing

•  In many ways, OOP is “all about” subclasses
overriding methods
–  Often not what you want, but what makes OOP

fundamentally different from, say, functional
programming (Scheme, ML, Haskell, etc., cf.
CSE413)

•  C++ gives you lots more options than Java with
different defaults, so it’s easy to scream “compiler
bug” when you mean “I’m using the wrong feature”…

2

Subclassing in C++

•  Basic subclassing:
 class D : public C { ... }

•  This is public inheritance; C++ has other kinds too
(won’t cover)
–  Differences affect visibility and issues when you

have multiple superclasses (won’t cover)
–  So do not forget the public keyword

3

More on subclassing

•  Not all classes have superclasses (unlike Java with
Object)
–  (and classes can have multiple superclasses —

more general and complexity-prone than Java)
•  Terminology

–  Java (and others): “superclass” and “subclass”
–  C++ (and others): “base class” and “derived class”

•  Our example code: House derives from Land which
derives from Property (read the code, no time for
detailed presentation)

•  As in Java, can add fields/methods/constructors, and
override methods

4

Constructor and destructors

•  Constructor of base class gets called before constructor of
derived class
–  Default (zero-arg) constructor unless you specify a

different one after the : in the constructor
–  Initializer syntax:
Foo::Foo(…): Bar(args); it(x) { … }

•  Needed to execute superclass constructor with
arguments; also works on instance variables and is
preferred in production code (slogan: “initialization
preferred over assignment”)

•  Destructor of base class gets called after destructor of
derived class

•  So constructors/destructors really extend rather than
override, since that is typically what you want
–  Java is the same

5

Method overriding, part 1

•  If a derived class defines a method with the same
method name and argument types as one defined in
the base class (perhaps because of an ancestor), it
overrides (i.e., replaces) rather than extends

•  If you want to use the base-class code, you specify
the base class when making a method call
(class::method(…))
–  Like super in Java (no such keyword in C++

since there may be multiple inheritance)
•  Warning: the title of this slide is part 1

6

Casting and subtyping

•  An object of a derived class cannot be cast to an object of
a base class.
–  For the same reason a struct T1 {int x,y,z;}

cannot be cast to type struct T2 {int x,y;}
(different size)

•  A pointer to an object of a derived class can be cast to a
pointer to an object of a base class.
–  For the same reason a struct T1* can be cast to

type struct T2* (pointers to a location in memory)
–  (Story not so simple with multiple inheritance)

•  After such an upcast, field-access works fine (prefix), but
what do method calls mean in the presence of overriding?

7

An important example

class A {
public:
 void m1() { cout << "a1"; }
 virtual void m2() { cout << "a2"; }
};
class B : public A {
 void m1() { cout << "b1"; }
 void m2() { cout << "b2"; }
};
void f() {
 A* x = new B();
 x->m1();
 x->m2();
}

8

In words…

•  A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

•  A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)
–  Like in Java
–  Called “dynamic dispatch”

•  A method-call is virtual if the method called is marked
virtual or overrides a virtual method
–  So “one virtual” somewhere up the base-class

chain is enough, but it’s probably better style to
repeat it

9

More on two method-call rules

•  For software-engineering, virtual and non-virtual each
have advantages:
–  Non-virtual – can look at the code to know what you’re

calling (even if subclass defines the same function)
–  Virtual – easier to extend code already written

•  The implementations are the same and different:
–  Same: Methods just become functions with one extra

argument this (pointer to receiver)
–  Different:

•  Non-virtual: linker can plug in code pointer
•  Virtual: At run-time, look up code pointer via “secret

field” in the object

10

Destructors revisited

class B : public A { ... }
...
B * b = new B();
A * a = b;
delete a;

•  Will B::~B() get called (before A::~A())?
•  Only if A::~A() was declared virtual

–  Rule of thumb: Declare destructors virtual; usually
what you want

11

Downcasts

Old news:
•  C pointer-casts: unchecked; better know what you are

doing
•  Java: checked; may raise ClassCastException

(checks “secret field”)
New news:
•  C++ has “all the above” (several different kinds of casts)
•  If you use single-inheritance and know what you are

doing, the C-style casts (same pointer, assume more
about what is pointed to) should work fine for downcasts

•  Worth learning about the differences on your own

12

Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” method.
•  Some subclass must override because there is no

definition in base class
•  Makes sense with dynamic dispatch
•  Unlike Java, no need/way to mark the class specially
•  Funny syntax in base class; override as usual:

class C {
 virtual t0 m(t1,t2,...,tn) = 0;
 ...
};

•  Side-comment: with multiple inheritance and pure-virtual
methods, no need for a separate notion of Java-style
interfaces

13

C++ summary

•  Lots of new syntax and gotchas, but just a few new
concepts:
–  Objects vs. pointers to objects
–  Destructors
–  virtual vs. non-virtual
–  pass-by-reference
–  Plus all the stuff we didn’t get to, especially

templates, exceptions, and operator overloading.
–  Later (if time): why objects are better than code-

pointers – coding up object-like idioms in C

14

