
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 7 – Introduction to C: The C Level of Abstraction

To Do – Virtual Machine Fixes

•  We’re about to start C programming! Fantastic!!!
•  But – there’s an unfortunate bug in the CSE VM. If

you’re using that you need to update/replace one of
the libraries.

•  In your CSE Linux VM, run this is a terminal window:
 sudo dnf -y install glibc-devel.x86_64

•  We will demo this later (and see what happens when
not done – you get a message something like “fatal
error: gnu/stubs-64.h: No such file or directory”)

•  This is fixed on klaatu so don’t do it there

2

Welcome to C

Compared to Java, in rough order of importance
–  Lower level (less for compiler to do)
–  Unsafe (wrong programs might do anything)
–  Procedural programming — not “object-oriented”
–  “Standard library” is much smaller
–  Many similar control constructs (loops, ifs, ...)
–  Many syntactic similarities (operators, types, ...)

•  A different world-view and much more to keep track
of; Java-like thinking can get you in trouble

3

Our plan

A semi-nontraditional way to learn C:
•  Learn how C programs run on typical x86-64 machines

–  Not (totally) promised by C’s definition
–  You do not need to “reason in terms of the

implementation” when you follow the rules
–  But it does help to know this model

•  To remember why C has the rules it does
•  To debug incorrect programs

•  Learn some C basics (including “Hello World!”)
•  Learn what C is (still) used for
•  Learn more about the language and good idioms
•  Towards the end of the quarter: A little C++

4

Some references
The C Programming Language, Kernighan & Ritchie

•  “K&R” is a classic, one that every programmer must
read. A bit dated now (doesn’t include C99 or C11
extensions), but the primary source

C: A Reference Manual, Harbison & Steele (now 5th ed.)
•  Detailed reference on C and libraries; includes more

recent versions of the C standard (but not C11)
Essential C, Stanford CS lib, http://cslibrary.stanford.edu/

101/EssentialC.pdf
Good short introduction to the language

cplusplus.com (reference site linked from 374 home page)
•  Good current reference for standard library

5

Why C?

•  Small language (not very many features) – relatively
easy to understand and implement efficiently

•  Provides low-level control over the computer when
needed, closer to assembly (machine) language
–  But still possible to write reasonably portable code

•  Still used in:
–  Embedded programming
–  Systems programming
–  High-performance code

•  And for CSE 374: learning to program in C will give
you better insight into how computers work and how
software interacts with the machine

6

Address space

Simple model of a running process (provided by the OS):
•  There is one address space (an array of bytes)

–  Most common size today for a typical machine is 264 or 232
–  For most of what we do it doesn’t matter
–  264 or 232 is way more memory than you have, but OS

maintains illusion that all processes have this much even if
they don’t

–  “Subscripting” this array takes 64 (or 32) bits
–  Something’s address is its position in this array
–  Trying to read a not-used part of the array may cause a

“segmentation fault” (immediate crash)
•  All data and code for the process are in this address space

–  Code and data are bits; program “remembers” what is where
–  O/S also lets you read/write files (stdin, stdout, stderr, etc.)

7

Address-space layout

•  The following can be different on different systems, but it’s one
way to understand how C is implemented:

 code globals heap → … ← stack

•  So in one array of 8-bit bytes we have:
–  Code instructions (typically immutable)
–  Space for global variables (mutable and immutable) (like

Java’s static fields)
–  A heap for other data (like objects returned by Java’s new)
–  Unused portions; access causes a “seg-fault”
–  A call-stack holding local variables and code addresses

•  ints typically occupy 4 bytes (32 bits); pointers 4 or 8 (32 or 64)
depending on underlying processor/OS (64 on our machines)

8

The stack

•  The call-stack (or just stack) has one “part” or
“frame” (compiler folks call it an activation record) for
each active function (cf. Java method) that has not
yet returned

•  It holds:
–  Room for local variables and parameters
–  The return address (index into code for what to

execute after the function is done)
–  Other per-call data needed by the underlying

implementation

9

What could go wrong?

•  The programmer has to keep the bits straight even though
C deals in terms of variables, functions, data structures,
etc. (not bits)
–  If arr is an array of 10 elements, arr[30] accesses some

other thing
–  Storing 8675309 where a return address should be

makes a function return start executing stuff that may
not be code

–  . . .
•  Correct C programs can’t do these things, but nobody is

perfect
•  On the plus side, there is no “unnecessary overhead” like

keeping array lengths around and checking them!
•  Okay, time to see C . . .

10

Hello, World!

•  Code:
#include<stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");
 return 0;

}
–  Compiling: gcc -o hello hello.c

•  (normally add -Wall -g -std=c11)
–  Running: ./hello

•  Intuitively: main gets called with the command-line args
and the program exits when it returns

•  But there is a lot going on in terms of what the language
constructs mean, what the compiler does, and what
happens when the program runs

•  We will focus mostly on the language
11

Quick explanation

#include<stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");

 return 0;
}

•  #include finds the file stdio.h (from where?) and includes its
entire contents (stdio.h describes printf, stdout, and more)

•  A function definition is much like a Java method (return type,
name, arguments with types, braces, body); it is not part of a
class and there are no built-in objects or “this”

•  An int is like in Java, but its size depends on the compiler (it is
32 bits on most mainstream Linux machines, even x86-64 ones)

•  main is a special function name; every full program has one
•  char** is a long story…

12

Pointers

•  Think address, i.e., an index into the address-space array
•  If argv is a pointer, then *argv returns the pointed-to value
•  So does argv[0]
•  And if argv points to an array of 2 values, then argv[1]

returns the second one (and so does *(argv+1) but the +
here is funny)

•  People like to say “arrays and pointers are the same thing
in C”. This is sloppy talking, but people say it anyway.

•  Type syntax: T* describes either
–  NULL (seg-fault if you dereference it)
–  A pointer holding the address of some number of

contiguous values of type T
•  How many? You have to know somehow; no length

primitive
13

Pointers, continued

•  So reading right to left: argv (of type char**) holds a
pointer to (one or more) pointer(s) to (one or more) char(s)

•  Fact #1 about main: argv holds a pointer to j pointers to
(one or more) char(s) where argc holds j

•  Common idiom: array lengths as other arguments
•  Fact #2 about main: For 0 ≤ i ≤ j where argc holds j, argv[i]

is an array of char(s) with last element equal to the
character ’\0’ (which is not ’0’)

•  Very common idiom: pointers to char arrays ending with
’\0’ are called strings. The standard library and language
rely on this idiom

•  [Let’s draw a picture of “memory” when hello runs.]

14

int main(int argc, char**argv)

Rest of the story

#include<stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");

 return 0;
}

•  printf is a function taking a string (a char*) (and often additional
arguments, which are formatted according to codes in the string)

•  "Hello, World!\n" evaluates to a pointer to a global, immutable
array of 15 characters (including the trailing ’\0’; and ’\n’ is one
character)

•  printf writes its output to stdout, which is a global variable of type
FILE* defined in stdio.h
–  How this gets hooked up to the screen (or somewhere else)

is the library’s (nontrivial) problem
•  Return value from main is program’s exit code (caller can check,

e.g., shell’s $?) 15

But wait, there’s more!

•  Many variations that we will explore as time permits,
starting with the next homework
–  Accessing program command-line arguments

(argc and argv)
–  Other I/O functions (fprintf, fputs, fgets, fopen, …)
–  Program exit values
–  Strings – much ado about strings

•  Strings as arrays of characters (local and
allocated on the heap)

•  Updating strings, buffer overflow, ’\0’
•  String library (<string.h>)

–  And more (structs, dynamic memory, …)
16

Advice

•  Start reading K&R (C Programming Language) or
your other favorite C book to get a view of how things
are intended to work

•  Use web/books to look up facts (“what’s the C
function to compute compare strings”, “how do I
format an integer for output in printf”)
–  C/C++ reference link on 374 web is a good start

•  Try stuff – write little programs, experiment
–  Need to write/run code as well as read about it

17

