
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 6 – sed, command-line tools wrapup

Where we are

•  Learned how to use the shell to run, combine, and
write programs

•  Learned regular-expressions (plus more) and grep for
finding guided by regexps

•  Now: sed for find-and-replace guided by regexps
•  Then: Short plug for awk (not tested or taught)
•  Then: Introduction to C

2

Review

•  grep takes a pattern and a file (or stdin)
•  The pattern describes a regexp:

–  Example: a[bc]*.?.?d*e
–  Special characters: . ? ^ $ * () [] + { } \ | (Some need

escaping; see the man page)
•  grep prints any line that has one or more substrings that

match.
–  Or invert with -v
–  Or count with -c

•  So the output is basically a subset of the input. What if we
want to change or add some output? Enter sed…

3

sed

•  A stream editor; a terrible little language that processes one line
at a time. Multi-line manipulations possible but painful.

•  Simple most-common use (and -e optional here):
sed -e s/pattern/replacement/g file

•  “For each line in file, replace every (longest) substring that
matches pattern with replacement and then print it to standard
out.” (often want to quote ‘s/…/…/g’ to avoid shell substitutions)

•  Simple variations:
–  omit file: read from stdin
–  omit g: replace only first match
–  sed -n and add p where g is: print only lines with 1 match
–  multiple -e s/.../.../...: apply each left-to-right
–  -f file2: read script from file; apply each line top-to-bottom

4

More sed

•  The replacement text can use \1 . . . \9 – very
common.

•  Hint: To avoid printing the whole line, match the
whole line and then have the replacement print only
the part you want.

•  Newline note: The \n is not in the text matched
against and is (re)-added when printed.
–  i.e., lines are read into an “edit buffer” and

processed there without the (local system’s)
newline.

–  Aside: “Line-ending madness” on 3 common
operating systems.

5

Even more sed

•  “sed lines” can have more:
–  different commands (so far, s for substitution)

•  A couple others: p, d, N
•  Other useful ones use the hold space (next slide)

–  different addresses (before the command)
•  number for exactly that line number
•  first~step (GNU only) (lines are first + n*step)
•  $ last line
•  /regexp/ lines containing a match of regexp

–  a label such as :foo before address or command
[:label] [address] [command-letter][more-stuff-for-command]

6

Fancy stuff

•  Usually (but not always) when you get to this stuff,
your script is unreadable and easier to write in
another language.
–  • The “hold” space. One other string that is held

across lines. Also the “pattern” space (where the
“current line” starts).

•  x, G, H
–  Branches to labels (b and t)

•  Enough to code up conditionals and loops like
in assembly language.

•  Your instructor never remembers the details, but
knows roughly what is possible.

7

sed summary

•  The simplest way to do simple find-and-replace using
regexps.

•  Standard on all Linux/Unix systems, even in limited
recovery boot modes

•  Programs longer than a few lines are possible, but
probably the wrong tool.

•  But a line-oriented stream editor is a very common
need, and learning how to use one can help you use
a better one.

•  In homework 3, a “one-liner” is plenty.
•  For the rest, see the manual.

8

awk

We will skip awk, another useful line-oriented editor.
Compared to sed:
•  Much saner programming constructs (math,

variables, for-loops, . . .)
•  Easier to print “fields” of lines, where fields are

separated by a chosen “delimiter”
•  Easier to process multiple lines at a time (change the

end-of-line delimiter)
•  Less regexp support; one-liners not as short

9

String-processing symmary

•  Many modern scripting languages (perl, python, ruby,
et al) support grep, sed, and awk features directly in
the language, perhaps with better syntax.
–  Better: combine features
–  Worse: one big program that “hopefully has

everything” instead of useful small ones
•  When all you need to do is simple text manipulation,

these tools let you “hack something up” quicker than,
say, Java.

•  But if you need “real” data structures, performance,
libraries, etc., you reach their practical limits quickly.

10

