getmem if free list is empty

First, call malloc to add a
large block of memory to
the free_list (blue
shading), including room
for the 16-byte header
block containing size and
*next (yellow shading)

malloc returns p

getmem returns (p + 16)
assuming we use this
entire block

The value of size is a
multiple of 16

>
P size
*next
—_—
(p +16)

— Size




If not using a whole block

If a call to getmem finds a
large enough block already
on the free_list and
doesn’t want to use it all,
we can split the block

Example, maybe we want
20 bytes

Need to return an address
that is a multiple of 16 so
will need to pad 20 to 32,
and don’t forget another
16 for a header, for a total
of 48. Return orange
pointer from getmem.

Adjust size on the block
portion still on free_list to
(size — 48)

>
P size l 8
*next l 8
— o
(p +16)

(p + 16 + size)
-48

e
(p + 16 + size)

-32

(p + 16 + size)
——




Where do blocks “allocated” by getmem go?

allocatedMemArray

(q—16)

Example from previous
slide, part still on free_list

size N

'8

- Size

*next

(q + size)

g was returned
from getmem,
stored on array of
allocated memory;
can get its size
from (g — 16)



allocatedMemArray

allocatedMemArray

Holds pointers returned
by getmem function.

g was returned
from getmem,

—— Maximum size of n_trials.
stored on array of Fill from position O
> allocated memory; .
can get its size onwards (entire array may
o —— from (q— 16) not ever be full). The
> freemem function
randomly chooses one
— element from filled part of
(q-16) 32 array to return to the
NULL free_list. Fill the gapin
> O(1) time by moving the

bottom element into the
gap and shortening the
length of the filled part of
the array.

(q + size)




allocatedMemArray

allocatedMemArray

—_— —_—
—_ > —_ >

O [
—_ > —_ >
—>

Re-integrate block into free_list

Holds pointers returned
by getmem function.
Maximum size of n_trials.
Fill from position O
onwards (entire array may
not ever be full). The
freemem function
randomly chooses one
element from filled part of
array to return to the
free_list. Fill the gap in
O(1) time by moving the
bottom element into the
gap and shortening the
length of the filled part of
the array.



free list stats

*next *next

/l = /l i

size

]

free_list

*next

-

NULL

total_free: the total amount of storage in bytes that is currently stored on the free list,

including any space occupied by header information or links in the free blocks.

Each block has 16 bytes of header information (size and *next take up 8 bytes each).

The value of size in each node is the number of bytes available for storage. So for the
above example, total_free is (size + 16) + (size + 16) + (size + 16). Or, traverse the list,
adding up all the size fields and counting the list nodes. Add (16 * number of nodes).

n_free_blocks: the total number of individual blocks currently stored on the free list

(how many nodes in the list).



print free_list

*next *next

/l = /l i

size

]

free_list

*next

-

NULL

print_heap: Each line of output should describe one free block and begin with two
hexadecimal numbers (Oxdddddddd, where d is a hexadecimal digit) giving the address

and length of that block.

Use format %p to print a pointer value, e.g., printf("%p\n", ptr);. For uintptr_t values,
since these are stored as long, unsigned integers on our 64-bit systems, they can be
printed as decimal numbers using the %lu format specifier: printf("%lu\n",uintvalue);.



Combining blocks on free_list

7

*next

free_list

48
NULL
.= =" l
l 16 bytes |

When freemem
returns a block of
storage to the pool, if
the block is physically
located in memory
adjacent to one or
more other free
blocks, then the free
blocks involved should
be combined into a
single larger block,
rather than adding the
small blocks to the
free list individually.

(just taken off allocatedMemArray)



Combining blocks on free_list

/l 32+16 +48
| oL

*next

free_list

I 16 bytes |

i We only need one header per node on the free_list,

|
L 16 bytes | so use these bytes for storage instead

I 16 bytes |

I 16 bytes |




