
CSE 374
Programming Concepts & Tools

Laura Campbell
(Thanks to Hal Perkins)

Winter 2014
Lecture 16 – Version control and svn

Where we are

•  Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects

•  Today: Managing source code
–  Reliable backup of hard-to-replace information (i.e., sources)
–  Tools for managing concurrent and potentially conflicting

changes from multiple people
–  Ability to retrieve previous versions

•  Note: None of this has anything to do with code. Like make,
version-control systems are typically not language-specific.
–  Many people use version control systems for everything they

do (code, papers, slides, letters, drawings, pictures, . . .)
•  Traditional systems were best at text files (comparing

differences, etc.); newer ones work fine with others too
–  But be sure to check before storing videos & other media

2

Version-control systems

•  There are plenty: scss (historical), rcs (mostly
historical), cvs (built on top of rcs), subversion, git
(much more distributed), mercurial, sourcesafe, …

•  The terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult – the basic concepts are the same

•  svn was the most widely used for the last decade and
is still common – we’ll learn basic svn

•  git and mercurial are the hot new thing – distributed
version control
–  Same core ideas, but more complicated to

support independent development and merging of
projects

3

The setup

•  There is a svn repository, where files (and all past
versions) are reliably stored
–  Hopefully the repository files are backed up, but that’s

not svn’s problem
•  You do not edit files in the repository directly. Instead:

–  You check-out a working copy and edit it
–  You commit changes back to the repository

•  You use the svn program to perform any operations that
affect the repository

•  One repository may hold many projects. A subversion
repository is just a database of projects and files.
–  Looks like a filesystem tree of project directories

4

Tasks

Learn the common cases; look up the uncommon ones.
In a production shop…
•  Create

–  a repository (rare – every few years)
–  a new project (infrequent – once or twice a year)
–  a working copy of a project (every few weeks or months?)

•  Working with files
–  Get updates, add or remove files, commit changes to

repository (daily)
–  Check version history, differences (as needed)

•  Branches, locks, watches, others (every now and then)
Basic command structure is the same for all

svn svn-options cmd cmd-options files…

5

Repository access

A repository can be:
•  Local: specify repository directory root via a regular

file path name url (file:///path...)
•  Remote: lots of remote protocols supported (ssh,

https, …) depending on repository configuration
–  Specify user-id and machine
–  Usually need svn and ssh installed locally
–  Need authentication (ssh password or other)

•  HW6 uses https access to remote server
•  Feel free to experiment with private, local repos

6

Getting started
•  Set up a repository (we’ll do this for you on hw6; if you do it

yourself you get to pick name, location)
svnadmin create path/svnrepos

•  Put initial version of project directory in repository (do this
once!)

svn import projdir svn://path/svnrepos/proj -m msg
–  Commands that update a repository require a message

(msg) that should briefly document the change
–  Once a project is imported, never use the original directory

again (never! We really mean that!)
–  Path depends on kind of access (local/remote)

•  Check out a copy of the project to a working directory
cd working-directory
svn checkout svn://path/svnrepos/proj proj

–  Working directory remembers repository location and
password for future checkin, update, etc.

•  HW6: path to repository server is on cse server – see writeup
7

File manipulation

•  Add files with svn add (won’t be in repository if you don’t)
•  Bring local working copy up to date with svn update (get

changed files from repository)
•  Commit local changes with svn commit

–  Any number of files including subdirectories recursively
if no filename specified

–  Files not actually added to repository until commit
•  Commit messages are mandatory

–  -m “short message”
–  -F filename-containing-message
–  Else pop up editor if EDITOR or VISUAL environment

variable is set
–  Else complain

8

Some examples

•  Update local working directory to match repository
svn update

•  Make changes (do via svn, not mv, cp, so repository will
also change on commit)

svn add file.c
svn move oldfile.c newfile.c
svn delete obsoletefile

•  Commit changes
svn commit -m ‘‘this is much better, fixes bug 31415’’

•  Examine your changes
svn status
svn diff file.c
svn revert file.c

9

Conflicts

•  This all works great if there is one working-copy. With multiple
working-copies there can be conflicts:
1.  Your working-copy checks out version 17 of foo
2.  You edit foo
3.  Somebody else commits a new version (18) of foo

•  Subversion tries to merge changes automatically; if it can’t you
must resolve the conflict. If svn commit fails:
–  Do svn update to get repository version and attempt merge

•  “G” means the automatic merge succeeded
•  “C” means you have to resolve the conflict

–  Merging is line-based, which is why svn is better for text
files

–  Conflicts indicated in the working-copy file (search for
<<<<<<)

–  Recent versions of svn handle more of this automatically or
interactively

10

svn gotchas

•  Do not forget to add files or your group members will
be very unhappy.

•  Keep in the repository exactly (and only) what you
need to build the application!
–  Yes: foo.c foo.h Makefile
–  No: foo.o a.out
–  You don’t want versions of .o files etc.:

•  Replaceable things have no value
•  They change a lot when .c files change a little
•  Developers on other machines can’t use them

11

Summary

•  Another tool for letting the computer do what it’s good
at:
–  Much better than manually emailing files, adding

dates to filenames, etc.
–  Managing versions, storing the differences
–  Keeping source-code safe
–  Preventing concurrent access, detecting conflicts

•  svn: full documentation is online, free, downloadable
 http://svnbook.red-bean.com/

–  Chapters 1 & 2 have most of what you’ll need

12

