
CSE 374
Programming Concepts & Tools

Laura Campbell
(Thanks to Hal Perkins)

Winter 2014
Lecture 14 – Makefiles and Compilation Management

Where we are

•  Onto tools...
•  Basics of make, particular the concepts
•  Some fancier make features (revenge of funky

characters)

 Besides the slides and online Unix docs, the Stanford
CSLib notes on Unix Programming Tools has a nice
overview of make and other tools:

http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

2

Onto tools

•  The language implementation (preprocessor,
compiler, linker, standard-library) is hardly the only
useful thing for developing software

•  The rest of the course:
–  Tools (recompilation managers, version control,

profilers; we’ve already seen a debugger)
–  Software-engineering issues
–  A taste of C++
–  Concurrency

3

make

•  make is a classic program for controlling what gets
(re)compiled and how. Many other such programs
exist (e.g., ant, maven, “projects” in IDEs, ...)

•  make has tons of fancy features, but only two basic
ideas:
1.  Scripts for executing commands
2.  Dependencies for avoiding unnecessary work

•  To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts...

4

Building software

 Programmers spend a lot of time “building” (creating
programs from source code)
–  Programs they write
–  Programs other people write

 Programmers automate repetitive tasks. Trivial example:
gcc -Wall -g -o widget foo.c bar.c baz.c

 If you:
–  Retype this every time: “shame, shame”
–  Use up-arrow or history: “shame” (retype after logout)
–  Have an alias or bash script: “good-thinkin”
–  Have a Makefile: you’re ahead of us

5

“Real” build process

•  On larger projects, you can’t or don’t want to have one big (set
of) command(s) that redoes everything every time you change
anything
1.  If gcc didn’t combine steps behind your back, you’d need to

preprocess and compile each file, then run the linker
2.  If another program (e.g., sed) created some C files, you

would need an “earlier” step
3.  If you have other outputs for the same source files (e.g.,

javadoc), it’s unpleasant to type the source file names
multiple times

4.  If you want to distribute source code to be built by other
users, you don’t want to explain the build logic to them

5.  If you have 105 to 107 lines of source code, you don’t want
to recompile them all every time you change something

•  A simple script handles 1–4 (use a variable for filenames for 3),
but 5 is trickier

6

Recompilation management

•  The “theory” behind avoiding unnecessary
compilation is a “dependency dag” (directed, acyclic
graph):

•  To create a target t, you need sources s1,s2, …,sn
and a command c (that directly or indirectly uses the
sources)

•  If t is newer than every source (file-modification
times), assume there is no reason to rebuild it

•  Recursive building: If some source si is itself a target
for some other sources, see if it needs to be rebuilt…

•  Cycles “make no sense”

7

Theory applied to C

•  Here is what we need to know today for C (still need
to talk more about linking in a future lecture)
–  Compiling a .c creates a .o – the .o depends on

the .c and all included files (.h files, recursively/
transitively)

–  Creating an executable (“linking”) depends on .o
files

–  So if one .c file changes, just need to recreate
one .o file and relink

–  If a header file changes, may need to rebuild more
–  Of course, this is only the simplest situation

8

An algorithm

•  What would a program (e.g., a shell script) that did
this for you look like? It would take:
–  a bunch of triples: target, sources, command(s)
–  a “current target to build”

•  It would compute what commands needed to be
executed, in what order, and do it (it would detect
cycles and give an error)

•  This is exactly what programs like make, ant, and
build tools integrated into IDEs do!

9

make basics

The “triples” are typed into a “makefile” like this:
target: sources

 command
Example:

foo.o: foo.c foo.h bar.h
 gcc -Wall -o foo.o -c foo.c

Syntax gotchas:
•  The colon after the target is required
•  Command lines must start with a TAB NOT SPACES
•  You can actually have multiple commands (executed in order); if

one command spans lines you must end the previous line with \
•  Which shell-language interprets the commands? (Typically

bash; to be sure, set the SHELL variable in your makefile.)

10

TAB
Important!

Using make

At the prompt:
prompt% make -f nameOfMakefile aTarget

Defaults:
•  If no -f specified, use a file named Makefile
•  If not target specified, use the first one in the file

•  Open source usage: You can download a tarball, extract
it, type make (four characters) and everything should work

•  Actually, there’s typically a “configure” step too, for finding
things like “where is the compiler” that generates the
Makefile (but we won’t get into that)
–  The mantra: ./configure; make; make install

11

Basics summary

So far, enough for next homework and basic use.
•  A tool that combines scripting with dependency analysis to

avoid unnecessary recompilation
•  Not language or tool-specific: just uses file-modification

times and shell-commands

But there’s much more you want so that your Makefiles are:
•  Short and modular
•  Easy to reuse (with different flags, platforms, etc.)
•  Useful for many tasks
•  Automatically maintained with respect to dependencies

Also, reading others’ makefiles can be tough because of all
the features: see info make or entire books

12

Precise review

A Makefile has a bunch of these:

target: source_1 ...source_n
 shell_command

Running make target does this:
•  For each source, if it is a target in the Makefile, process it

recursively
•  Then:

–  If some source does not exist, error
–  If some source is newer than the target (or target does

not exist), run shell_command (presumably updates
target, but that is up to you; shell_command can do
anything)

13

make variables

You can define variables in a Makefile. Example:
CC = gcc
CFLAGS = -Wall
foo.o: foo.c foo.h bar.h
 $(CC) $(CFLAGS) -c foo.c -o foo.o

Why do this?
•  Easy to change things once and affect many commands
•  Can change variables on the command-line (overrides

definitions in file) (For example make CFLAGS=-g)
•  Easy to reuse most of a Makefile on new projects
•  Can use conditionals to set variables (using inherited

environment variables)…

14

make conditionals

EXE=
ifdef WINDIR # defined on Windows (from folklore)
 EXE=.exe
endif
widget$(EXE): foo.o bar.o

 $(CC) $(CFLAGS) -o widget$(EXE) foo.o bar.o

•  Other forms of conditionals exist (e.g., are two strings
equal)

15

More variables

•  It’s also common to use variables to hold list of filenames:
OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)
 gcc -o widget $(OBJFILES)

clean:
 rm $(OBJFILES) widget

•  clean is a convention: remove any generated files, to “start
over” and have just the source

•  It’s “funny” because the target doesn’t exist and there are
no sources, but that’s okay:
–  If target doesn’t exist, it must be “remade” so run the

commands
–  These “phony” targets have several uses, another is an

“all” target....

16

“all” example

all: prog B.class someLib.a # notice no commands this time
prog: foo.o bar.o main.o

 gcc -o prog foo.o bar.o main.o
B.class: B.java

 javac B.java
someLib.a: foo.o baz.o

 ar r foo.o baz.o
foo.o: foo.c foo.h header1.h header2.h

 gcc -c -Wall foo.c

...(similar targets for bar.o, main.o, baz.o) ...

17

Revenge of the funny characters

And you thought we were done with this after bash, sed…
In commands:

–  $@ for target
–  $^ for all sources
–  $< for left-most source
–  …

Examples:
 widget$(EXE): foo.o bar.o
 $(CC) $(CFLAGS) -o $@ $^
 foo.o: foo.c foo.h bar.h
 $(CC) $(CFLAGS) -c $<

18

And more…

•  There are a lot of “built-in” rules. E.g., make just “knows”
to create foo.o by calling $(CC) $(CFLAGS) on foo.c.
(Opinion: may be more confusing than helpful. YMMV)

•  There are “suffix” rules and “pattern” rules. Example:
%.class: %.java
 javac $< # Note we need $< here

•  Remember you can put any shell command on the
command-line, even whole scripts

•  You can repeat target names to add more dependencies
(useful with automatic dependency generation)

•  Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

19

Dependency generation

•  So far, we are still listing dependencies manually,
e.g.:

foo.o: foo.c foo.h bar.h
•  If you forget, say, bar.h, you can introduce subtle

bugs in your program (or if you’re lucky, get confusing
errors)

•  This is not make’s problem: It has no understanding
of different programming languages, commands, etc.,
just file-mod times

•  But it does seem too error-prone and busy-work to
have to remember to update dependencies, so there
are often language-specific tools that do it for you …

20

Dependency-generator example

gcc -M
•  Actually lots of useful variants, including -MM and

-MG. See man gcc (or info gcc)
•  Automatically creates a rule for you
•  Then include the resulting file in your Makefile
•  Typically run via a phony depend target, e.g.:

depend: $(PROGRAM_C_FILES)
 gcc -M $^

•  The program makedepend combines many of these
steps; again it is C-specific but some other languages
have their own

21

Build-script summary

•  Always script complicated tasks
•  Always automate “what needs rebuilding” via dependency

analysis
•  make is a text-based program with lots of bells and

whistles for doing this. It is not language-specific. Use it.
–  It also is independent of particular IDEs/editors so

everyone on the project can have a repeatable build
•  With language-specific tools, you can automate

dependency generation
•  make files have a way of starting simple and ending up

unreadable. It is worth keeping them clean.
•  There are conventions like make all and make clean,

common when distributing source code

22

