
CSE 374
Programming Concepts & Tools

Laura Campbell
(thanks to Hal Perkins)

Winter 2014
Lecture 5 – Regular Expressions, grep, Other Utilities

Where we are

•  Done learning about the shell and it’s bizarre
“programming language” (but pick up more on hw3)

•  Today: Specifying string patterns for many utilities,
particularly grep and sed (also needed for hw3)

•  Next: sed

•  And then: a real programming language – C

2

Globbing vs Regular Expressions

•  “Globbing” refers to shell filename expansion (ls f*)
•  “Regular expressions” are a different but

overlapping set of rules for specifying patterns to
programs like grep. (Sometimes called “pattern
matching”)

•  More distinctions:
–  Regular expressions as in CS/mathematics
–  “Regular expressions” in grep (specific syntax)
–  “Extended regular expressions” in egrep

•  Same as grep –E
–  Other variations in other programs…

3

Real Regular Expressions

•  Some of the crispest, elegant, most useful CS theory out
there. What computer scientists know and ill-educated
hackers don’t (to their detriment).

•  A regular expression p may “match” a string s.
•  If p =

–  a, b, … matches the single character (basic reg. exp.)
–  p1p2, …, if we can write s as s1s2, where p1 matches

s1, p2 matches s2.
–  p1 | p2, … if p1 matches s or p2 matches s

•  (in egrep, for grep use \|)
–  p1*, if there is an i ≥ 0 such that p1…p1 (i times)

matches s.
•  (for i = 0, matches the zero-character string ε)

4

Conveniences

•  Most regular expressions allow various abbreviations
for convenience, but these do not make the language
any more powerful
–  p+ is pp*
–  p? is (ε | p)
–  [zd-h] is z | d | e | f | g | h
–  [^a-z] and . are more complex, but just technical

conveniences (entire character set except for
those listed, or a single character .)

–  p{n} is p…p (p repeated n times)
–  p{n,} is p…pp* (p repeated n or more times)
–  p{n,m} is p repeated n through m times

5

grep – beginning and end of lines

•  By default, grep matches each line against .*p.*
•  You can anchor the pattern with ^ (beginning) and/or

$ (end) or both (match whole line exactly)
•  These are still “real” regular expressions

6

Gotchas

•  Modern (i.e., GNU) versions of grep and egrep use
the same regular expression engine for matching, but
the input syntax is different for historical reasons
–  For instance, \{ for grep vs { for egrep
–  See grep manual sec. 3.6

•  Must quote patterns so the shell does not muck with
them – and use single quotes if they contain $ (why?)

•  Must escape special characters with \ if you need
them literally: \. and . are very different
–  But inside [] many more characters are treated

literally, needing less quoting (\ becomes a literal!)

7

Previous matches – back references

•  Up to 9 times in a pattern, you can group with (p) and
refer to the matched text later!
–  (Need backslashes in sed.)

•  You can refer to the text (most recently) matched by
the nth group with \n.

•  Simple example: double-words ^\([a-zA-Z]*\)\1$
•  You cannot do this with actual regular expressions;

the program must keep the previous strings.
–  Especially useful with sed because of

substitutions.

8

Other utilities

•  Some very useful programs you can learn on your
own:
–  find (search for files, e.g., find /usr -name words)
–  diff (compare two files’ contents; output is easy for

humans and programs to read (see patch))
•  Also:

–  For many programs the -r flag makes them
recursive (apply to all files, subdirectories,
subsubdirectories, …).

–  So “delete everything on the computer” is
cd /; rm -rf * (be careful!)

9

10

