
CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2013

Lecture 21 – Function Pointers and Objects in C

Function pointers

•  “Pointers to code” are almost as useful as “pointers to
data”. (But the syntax is painful in C.)

•  (Somewhat silly) example:
void app_arr(int len, int * arr, int (*f)(int)) {
 for(int k = 0; k < len; k++)
 arr[k] = (*f)(arr[k]);

}
int twox(int i) { return 2*i; }
int sqr(int i) { return i*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twox);}
void sqr_arr(int len, int* arr) { app_arr(len,arr,&sqr); }

2

C function-pointer syntax

•  C syntax: painful and confusing. Rough idea: The compiler
“knows” what is code and what is a pointer to code, so
you can write less than we did on the last slide:

arr[k] = (*f)(arr[k]);
 ⇒ arr[k] = f(arr[k]);

app_arr(len,arr,&twoX);
 ⇒ app_arr(len,arr,twoX);

•  Examples: Compute integral with function (pointer) to
integrate and bounds as parameters (int1.c, int2.c)

3

What is an object?

First Approximation

•  An object consists of data and methods

–  Provides the correct (conceptual) model
–  Easy to explain

•  But…
–  Doesn’t make engineering sense — we don’t

want to replicate the (same) method bodies
(function code) in every object

4

What is an object?

Second Approximation
•  An object consists of data and pointers to methods
•  The compiler adds an additional, implicit “this” parameter

to every method holding a reference to the receiver object
–  Gives the method a way to refer to the instance

variables of the correct receiver object
–  Actual method (function) code has no other connection

to any particular object
•  Avoids code duplication
•  See BAccount1.c (C version of Baccount.cpp)
But. . .
•  Still wastes space for pointers to every class function in

every object, particularly if there is relatively little instance
data, or if the class has a large number of methods

5

What is an object?
How it’s really done (C++, Java, et al):
•  There is a single “virtual function” table (vtable) for each

class containing pointers to the methods of that class.
–  This is static, constant class data – does not change

during execution; initialized at load/startup time
•  An object consists of data and a pointer to its class vtable
•  Method calls are indirect through the vtable
•  Each method still has an implicit this parameter that refers

to the receiving object
•  Avoids code duplication
•  Avoids method pointer duplication
•  Costs an indirect pointer lookup during each function call
•  Example: BAccount2.c

6

Inheritance and overriding

Basic ideas:
•  We have a vtable for every class and subclass
•  The vtable for a subclass points to the correct methods —

either ones belonging to the base class that are inherited,
or ones belonging to the subclass (added or overriding)

•  Key idea: The initial part of the vtable for a subclass points
to the methods that are inherited or overridden from the
base class in exactly the same order they appear in the
base class vtable
–  So compiled code can find the correct method at the

same offset in the vtable whether it is overridden or not
•  Use casts as needed to adjust references up and down

the inheritance chain

7

