
 CSE 374 Final Exam 3/21/13

 Page 1 of 15

Name ________________________________

Do not write your id number or any other confidential information on this page.

There are 9 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed laptops, closed twitter, closed telepathy,

closed Facebook, etc.

Please wait to turn the page until everyone is told to begin.

 CSE 374 Final Exam 3/21/13

 Page 2 of 15

Score _________________ / 100

1. ______ / 8

2. ______ / 7

3. ______ / 18

4. ______ / 14

5. ______ / 8

6. ______ / 12

7. ______ / 12

8. ______ / 12

9. ______ / 9

 CSE 374 Final Exam 3/21/13

 Page 3 of 15

Question 1. (8 points) (debugging) Consider the following program, which compiles

without warning, but crashes when run:

int factorial(int x) {

 if(x==1)

 return 1;

 return x * factorial(x-1);

}

int main(int argc, char**argv) {

 int n = factorial(0);

 return 0;

}

(a) (3 points) Looking at the source code, why does the program crash?

(b) (5 points) What would happen if you used gdb to run this program? Without

looking at the source code, what gdb commands would you use? What would you be

able to observe and conclude?

 CSE 374 Final Exam 3/21/13

 Page 4 of 15

Question 2. (7 points) A little preprocessor mischief. What output does this program

produce? (It does compile and execute without errors.)

#include <stdio.h>

#define magic 13

#ifdef number

#define number 17

#endif

#ifndef number

#define number 42

#endif

#define doubleplus(x,y) x*2+y

#define plusdouble(x,y) x+2*(y)

int main() {

 printf("magic number is %d %d\n", magic, number);

 printf("%d\n", doubleplus(1+2,3+4));

 printf("%d\n", plusdouble(3+4,1+2));

 return 0;

}

Output:

 CSE 374 Final Exam 3/21/13

 Page 5 of 15

Question 3. (18 points) C programming with linked structures. Suppose we use the

following struct to represent nodes in a linked list of C strings.

 struct node {

 char * str; // heap-allocated string in this node.

 struct node * next; // next node or NULL if none

 };

Complete the following C function insert to add a new heap-allocated copy of string s

to the list starting at lst only if s does not already appear in the list. You may assume

the list does not contain any duplicates and the strings are not sorted in any particular

order. You may insert the copy of s anywhere in the list if you need to add it. The list

might be empty initially, in which case you should create a single node pointing to a copy

of s and return a pointer to that new node as the result. If the string s already appears in

the list, the function should return a pointer to the original, unmodified list.

Example: the following statement would add “xyzzy” to the list whose first node is

words if “xyzzy” is not already in the list:

 words = insert(“xyzzy”, words);

You may define additional auxiliary functions if you wish. You should assume that any

necessary headers like <string.h> are already included in the source file. For full

credit you must use library functions when appropriate. You may assume that all strings

are properly \0-terminated and you do not need to worry about overrun errors (i.e., it’s ok

to use strcmp instead of strncmp, etc.)

 // add a copy of s to the list lst if it is not already

 // present, and return a pointer to the possibly updated

 // list.

 struct node * insert(char * s, struct node * lst) {

(There is additional space on the next page if you need it.)

 CSE 374 Final Exam 3/21/13

 Page 6 of 15

Question 3. (cont.) Extra space if needed.

 CSE 374 Final Exam 3/21/13

 Page 7 of 15

Question 4. (14 points) (makefiles and compiler toolchain) Suppose we have the

following collection of C header and implementation files.

thing.h

#ifndef THING_H

#define THING_H

...

#endif

thing.c

#include "thing.h"

#include "impl.h"

...

impl.h

#ifndef IMPL_H

#define IMPL_H

...

#endif

app.c

#include "thing.h"

int main() { ... }

We would like to write a simple Makefile to build a program app from these files, but

there is a catch. We are working on an experimental system and the full gcc compiler

hasn’t been finished yet. We can, however, run the preprocessor (cpp), compiler (cc1),

and loader (ld) as separate programs, so it is possible to build programs as long as we do

it a step at a time. These programs are run using the following commands:

 cpp infile outfile Read from infile, do preprocessing, write results to outfile.

 infile is an ordinary .c file. outfile may have any name, but

 for this problem, use “.i” as the file extension. For example,
 cpp foo.c foo.i

 cc1 infile outfile Read the preprocessor output from infile (e.g., foo.i)¸ and

 write compiled code to outfile (e.g., foo.o). outfile is the

 same .o produced by gcc -c, but no -c option is needed.

 ld -o outfile infiles Read one or more .o files (the infiles) and write the executable

 program outfile. Also automatically load files from the

 standard libraries like glibc, as done normally.

(a) Recall that we can show the dependencies between files needed to build a program

using a graph, where we draw an arrow from each file name to the file(s) it depends on.

For example, the drawing to the left shows how we would diagram a program named x

that depends on (is built from) x.o, which in turn depends on x.c.

On the next page, draw a graph (diagram) showing the dependencies between the

executable program app (created by compiling and linking app.c and the other files)

and all of the source (.c), header (.h), and compiled (.o) files involved in building it.

Your dependency graph must also include the .i files produced by the cpp preprocessor

and read by the C compiler cc1.

(You may detach this page for convenience while working if you wish.)

x.c

x.o

x

 CSE 374 Final Exam 3/21/13

 Page 8 of 15

Question 4. (cont.) (a) (7 points) Draw your dependency graph for the files that make

up the app executable program. Be sure to include the preprocessor output .i files as

well as the more customary .o, .h, and .c files, and the app executable file.

(b) (7 points) Write a Makefile whose default target builds the program app, and

which only preprocesses and recompiles individual files as needed. Your Makefile

should reflect the dependency graph you drew in part (a).

 CSE 374 Final Exam 3/21/13

 Page 9 of 15

Question 5. (8 points) (addresses and pointers) In embedded computer systems, the

devices managed by a microcontroller are often made to look like ordinary memory

locations when viewed by the program executing on the processor. Reading or writing

these “special” device memory locations causes the device to do things or return some

information. For instance, a device that launches rockets in a fireworks display might

appear to the program as three 4-byte integers in memory starting at some location x:

location function

x Command to be performed

x+4 Set to 1 to start doing the command

x+8 Status register – read to find out status

In this example, we might launch a rocket by storing the code 17 (or whatever code is

needed) in location x, then store a 1 in location x+4 to trigger the launch, then we we can

read the contents of location x+8 to find out what happened.

For this problem, complete the implementation of function control below. The two

parameters to this function are the integer address of the first int in the block that

controls the device, and the command code to be stored at that address. The function

should store the code at the given address, then set the following int location to 1 to

start the command, and finally read the third int and return it as the function value.

Hints: recall that ints occupy 4 bytes. Pointers and uintptr_t values occupy 8.

 // store cmd at location addr, then store a 1 in the next

 // 4-byte int to execute that command, then read and

 // return the following int with the device status.

 int control(uintptr_t addr, int cmd) {

 }

 CSE 374 Final Exam 3/21/13

 Page 10 of 15

Question 6. (12 points) Virtual things. Consider the following class definitions and

main program:

#include <string> // C++ “smart” string objects

#include <iostream> // C++ stream I/O

using namespace std;

class Pet {

 private:

 string name;

 public:

 Pet(string who): name(who) { }

 virtual string get_name() { return name; }

 virtual void speak() { cout << "grunt" << endl; }

};

class Cat: public Pet {

 public:

 Cat(string who): Pet(who) { }

 virtual void scratch() { cout << "scratch" << endl; }

 virtual void speak() { cout << "meow" << endl; }

};

class Kitten: public Cat {

 public:

 Kitten(string name): Cat(name) { }

 virtual void speak() { cout << "yip" << endl; }

 virtual void move() { cout << "run" << endl; }

};

int main() {

 Cat * critter = new Cat("spot");

 Kitten * kat = new Kitten("puff");

 return 0;

}

On the next page, complete the diagram showing the variables, the objects they point to,

the data stored in in or referenced by each object, and the virtual function tables (vtables)

referenced by each object. The vtable for class Pet is drawn for you, as are boxes

representing all the methods in the program.

(You may remove this page from the exam for convenience while working if you wish.)

 CSE 374 Final Exam 3/21/13

 Page 11 of 15

Question 6. (cont.) Complete the following diagram by adding virtual function tables for

classes Cat and Kitten, and connecting the data objects, vtables, and functions by drawing

arrows. A few pointers, and the vtable for class Pet, are provided to get you started.

Main program Heap objects vtables Methods

Pet

critter

kat

Pet::Pet

Pet::get_name

Pet::speak

Cat::Cat

Cat::scratch

Cat::speak

Kitten::Kitten

Kitten::speak

Kittten::move

 CSE 374 Final Exam 3/21/13

 Page 12 of 15

Question 7. (12 points) The return of the dreaded traditional annoying exasperating

expected C++ “what does this print” question. What output is produced when the

following program is executed? (It does compile and execute without errors.)

#include <iostream>

using namespace std;

class One {

 public:

 void f() { g(); cout << "One::f" << endl; }

 void g() { cout << "One::g" << endl; }

 virtual void h() { cout << "One::h" << endl; }

};

class Two: public One {

 public:

 void g() { cout << "Two::g" << endl; }

 virtual void h() { f(); cout << "Two::h" << endl; }

};

class Three: public Two {

 public:

 virtual void h() { g(); cout << "Three::h" << endl; }

};

int main() {

 One* a = new Two();

 a->h();

 cout << "----" << endl;

 One* b = new Three();

 b->h();

 cout << "----" << endl;

 b->f();

 return 0;

}

Output:

 CSE 374 Final Exam 3/21/13

 Page 13 of 15

Question 8. (12 points) &, *, and other punctuation. We found a sheet of paper with the

following C++ class definition, function, and client code that calls the function.

class Point { // container for 2-D point coordinates

 public:

 int x, y;

};

// add absolute value of p2 coordinates to p1

void move(Point &p1, Point p2) {

 if (p2.x < 0) p2.x = -p2.x;

 if (p2.y < 0) p2.y = -p2.y;

 p1.x = p1.x + p2.x;

 p1.y = p1.y + p2.y;

}

Client code:

 Point a; Point b;

 // initializations omitted

 ...

 move(a, b);

Unfortunately, we want to use this on a project that only has a C compiler and does not

allow C++ code.

On the following page, translate this code to C code that is exactly equivalent to the

original C++ code. That is, any stack allocated variables must remain on the stack, any

heap allocated variables must remain on the heap, the call of the translated C function

must have exactly the same effect as calling the original C++ function, etc.

You should assume that the Point class is translated to the following C struct, and

you do not need to copy this struct definition into your answer.

struct Point {

 int x;

 int y;

};

(You may remove this page from the exam for convenience while working if you wish.)

 CSE 374 Final Exam 3/21/13

 Page 14 of 15

Question 8. (cont.) Below, write your C version of function move and the client code.

 CSE 374 Final Exam 3/21/13

 Page 15 of 15

A short answer question to finish up.

Question 9. (9 points) In C++, there are many different ways to store values in variables.

For a class X, three of them are: the ordinary constructor(s) (X::X(...)), the copy

constructor (X::X(const & X other)) and the assignment operator

(X::operator=(const & X other)). Describe briefly how these differ by

giving a one- or two-sentence explanation of what each one does, and be sure it is clear

what is unique about each one that differentiates it from the others:

(a) Ordinary constructor

(b) Copy constructor

(c) Assignment

