
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 20 – C++ Subclasses and Inheritance

Subclassing

• In many ways, OOP is “all about” subclasses

overriding methods

– Often not what you want, but what makes OOP

fundamentally different from, say, functional

programming (Scheme, ML, Haskell, etc., cf.

CSE413)

• C++ gives you lots more options than Java with

different defaults, so it’s easy to scream “compiler

bug” when you mean “I’m using the wrong feature”…

2

Subclassing in C++

• Basic subclassing:

 class D : public C { ... }

• This is public inheritance; C++ has other kinds too

(won’t cover)

– Differences affect visibility and issues when you

have multiple superclasses (won’t cover)

– So do not forget the public keyword

3

More on subclassing

• Not all classes have superclasses (unlike Java with
Object)

– (and classes can have multiple superclasses —
more general and complexity-prone than Java)

• Terminology

– Java (and others): “superclass” and “subclass”

– C++ (and others): “base class” and “derived class”

• Our example code: House derives from Land which
derives from Property (read the code, no time for
detailed presentation)

• As in Java, can add fields/methods/constructors, and
override methods

4

Constructor and destructors

• Constructor of base class gets called before constructor of
derived class

– Default (zero-arg) constructor unless you specify a
different one after the : in the constructor

– Initializer syntax:
Foo::Foo(…): Bar(args); it(x) { … }

• Needed to execute superclass constructor with
arguments; also works on instance variables and is
preferred in production code (slogan: “initialization
preferred over assignment”)

• Destructor of base class gets called after destructor of
derived class

• So constructors/destructors really extend rather than
override, since that is typically what you want

– Java is the same

5

Method overriding, part 1

• If a derived class defines a method with the same

method name and argument types as one defined in

the base class (perhaps because of an ancestor), it

overrides (i.e., replaces) rather than extends

• If you want to use the base-class code, you specify

the base class when making a method call
(class::method(…))

– Like super in Java (no such keyword in C++

since there may be multiple inheritance)

• Warning: the title of this slide is part 1

6

Casting and subtyping

• An object of a derived class cannot be cast to an object of

a base class.

– For the same reason a struct T1 {int x,y,z;}

cannot be cast to type struct T2 {int x, y;}

(different size)

• A pointer to an object of a derived class can be cast to a

pointer to an object of a base class.

– For the same reason a struct T1* can be cast to

type struct T2* (pointers to a location in memory)

– (Story not so simple with multiple inheritance)

• After such an upcast, field-access works fine (prefix), but

what do method calls mean in the presence of overriding?

7

An important example

class A {

public:

 void m1() { cout << "a1"; }

 virtual void m2() { cout << "a2"; }

};

class B : public A {

 void m1() { cout << "b1"; }

 void m2() { cout << "b2"; }

};

void f() {

 A* x = new B();

 x->m1();

 x->m2();

}

8

In words…

• A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression

• A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to)

– Like in Java

– Called “dynamic dispatch”

• A method-call is virtual if the method called is marked
virtual or overrides a virtual method

– So “one virtual” somewhere up the base-class
chain is enough, but it’s probably better style to
repeat it

9

More on two method-call rules

• For software-engineering, virtual and non-virtual each
have advantages:

– Non-virtual – can look at the code to know what you’re
calling (even if subclass defines the same function)

– Virtual – easier to extend code already written

• The implementations are the same and different:

– Same: Methods just become functions with one extra
argument this (pointer to receiver)

– Different:

• Non-virtual: linker can plug in code pointer

• Virtual: At run-time, look up code pointer via “secret
field” in the object

10

Destructors revisited

class B : public A { ... }

...

B * b = new B();

A * a = b;

delete a;

• Will B::~B() get called (before A::~A())?

• Only if A::~A() was declared virtual

– Rule of thumb: Declare destructors virtual; usually

what you want

11

Downcasts

Old news:

• C pointer-casts: unchecked; better know what you are

doing

• Java: checked; may raise ClassCastException

(checks “secret field”)

New news:

• C++ has “all the above” (several different kinds of casts)

• If you use single-inheritance and know what you are

doing, the C-style casts (same pointer, assume more

about what is pointed to) should work fine for downcasts

• Worth learning about the differences on your own

12

Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” metho.

• Some subclass must override because there is no
definition in base class

• Makes sense with dynamic dispatch

• Unlike Java, no need/way to mark the class specially

• Funny syntax in base class; override as usual:

class C {

 virtual t0 m(t1,t2,...,tn) = 0;

 ...

};

• Side-comment: with multiple inheritance and pure-virtual
methods, no need for a separate notion of Java-style
interfaces

13

C++ summary

• Lots of new syntax and gotchas, but just a few new

concepts:

– Objects vs. pointers to objects

– Destructors

– virtual vs. non-virtual

– pass-by-reference

– Plus all the stuff we didn’t get to, especially

templates, exceptions, and operator overloading.

– Later (if time): why objects are better than code-

pointers – coding up object-like idioms in C

14

