
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 18 – Linking and Libraries

Intro to linking

• Linking is just one example of “using stuff in other
files”...

• In compiling and running code, one constantly needs
other files and programs that find them

• Examples:

– C preprocessor #include

– C libraries (where is the code for printf and malloc)

• Usually you’re happy with programs “automatically
finding what you need” so the complicated rules can
be hidden

• Today we will demystify and make generalizations

2

The compilation picture (revisited)

 Old story, but new details…

3

Common questions

1. What you are looking for?

2. When are you looking for it?

3. Where are you looking?

4. What problems do cycles cause?

5. How do you change the answers?

• Old friends: files, function names, paths, environment

variables, command-line flags, scripts, configuration

files, ...

4

#include files – what really happens?

cpp (invoked implicitly by gcc or g++ on files ending in

.c, .cc, .cpp, etc.).

• What: files named “foo” when encountering
#include <foo> or #include "foo" (note .h is

just a convention)

• When: When the preprocessor is run (making x.i from

x.c, although usually you don’t see this)

• Where: “include path”: current-directory, directories

chosen when cpp is installed (e.g., /usr/include),

directories listed in INCLUDE shell variable,

directories listed via -I flags, ...

5

more #include…

• The rules on “what overrides what” exist, but tough to
remember

• Can look at result to see “what really happened”

• Example: for nested #include, the original current-
directory or the header file’s current-directory?

• Example: Why shouldn’t you run cpp on one machine and
compile the results on another?

What about cycles?

• File a.c calls functions in file b.c which calls functions in
file a.c which …

• Not a problem – put declarations in header files and
include each header file as needed. Actual function
definitions aren’t circular

6

Compiled code – .o files

• So far we have talked about finding source code to

create compiled code (.o files for C)

• These files are not whole applications, so we have

the same questions for “finding the other code”

– printf, malloc, getmem (called from main), …

• A .o file is not “runnable” – you have to actually link it

with the other code to make an executable

• Linking (ld, or called via gcc or g++) is a “when”

between compiling and executing

• Again, gcc usually hides this from you, but it helps to

know what is going on

7

Linking

• If a C file uses but does not define a function (or global

variable) foo, then the .o has “unresolved references”.

Declarations don’t count; only definitions.

• The linker takes multiple .o files and “patches them” to

include the references. (It literally moves code and

changes instructions like function calls.)

• An executable must have no unresolved references (you

have seen this error message)

• What: Definitions of functions/variables

• When: The linker creates an executable

• Where: Other .o files on the command-line (and much

more...)

8

More about where

• The linker and O/S don’t know anything about main or the
C library

• That’s why gcc “secretly” links in other things

• We can do it ourselves, but we would need to know a lot
about how the C library is organized. Get gcc to tell us:

– gcc -v -static hello.c

– Should be largely understandable

– -static (a simple “get all the code you need into a.out”
story for now)

– the secret *.o files: (they do the stuff before main gets
called, which is why gcc gives errors about main not
being defined)

9

Archives

• An archive is roughly a tar file, but with extra header
information about the .o files in it

• Create with ar program (lots of features, but fundamentally
take .o files and put them in, but order matters)

• The semantics of passing ld an argument like -lfoo is
complicated and often not what you want:

– Look for what: file libfoo.a (ignoring shared libraries for
now), when: at link-time, where: defaults, environment
variables, and the -L flags (analogous to -I)

– Go through the .o files in libfoo.a in order

• If a .o defines a needed reference, include the .o

• Including a .o may add more needed references

• Continue

10

The rules for linking

• A call to ld (or gcc for linking) has .o files and -lfoo options
in left-to-right order

• State: “Set of needed functions not defined” initially empty

• Action for .o file:

– Include code in result

– Remove from set any functions defined

– Add to set any functions used and not yet defined

• Action for .a file: For each .o in the archive, in order

– If it defines one or more functions in set, do all 3 things
we do for a .o file

– Else do nothing

• At end, if set is empty create executable, else error

11

Library gotchas

1. Position of -lfoo on command-line matters

– Only resolves references for “things to the left”

– So -lfoo typically put “on the right”

2. Cycles

– If two .o files in a .a need each other, you’ll have to
link the library in (at least) twice!

– If two .a files need each other, you might do -lfoo –
lbar -lfoo -lbar -lfoo ...

– (There are command-line options to do this for
you, but not the default.)

3. If you include math.h, then you’ll need -lm

12

Another gotcha

4. No repeated function names

– Two .o files in an executable can’t have (public)

functions of the same name

• Can have static functions with the same name!

(“static” on a function means not externally

visible)

– Can get burned by library functions you do not

know exist, but only if you need another function

from the same .o file

• (Solution: 1 public function per file?!)

13

Dynamic Linking

• The basic static linking model has disadvantages:

– Uses lots of disk space (copy library functions for every
application)

– More memory when programs are running (what if the
O/S could have different processes magically share
code?)

• So we can link later:

– Shared libraries (link when program starts executing).
Saves disk space. O/S can share actual memory
behind your back (if/because code is immutable).

– Dynamically linked/loaded libraries. Even later (while
program is running). Devil is in the details.

• “DLL hell” – if the version of a library on a machine is not
the one the program was tested with…

14

Summary

• Things like “standard libraries” “header files” “linkers”

etc. are not magic

• But since you rarely need fine-grained control, you

easily forget how to control typically-implicit things.

(You don’t need to know any of this until you need to

know it)

• There’s a huge difference between source code and

compiled code (a header file and an archive are quite

different)

• The linker includes files from archives using strange

rules

15

