
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 16 – Version control and svn

Where we are

• Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects

• Today: Managing source code

– Reliable backup of hard-to-replace information (i.e., sources)

– Tools for managing concurrent and potentially conflicting
changes from multiple people

– Ability to retrieve previous versions

• Note: None of this has anything to do with code. Like make,
version-control systems are typically not language-specific.

– Many people use version control systems for everything they
do (code, papers, slides, letters, drawings, pictures, . . .)

• Traditional systems were best at text files (comparing
differences, etc.); newer ones work fine with others too

– But be sure to check before storing videos & other media

2

Version-control systems

• There are plenty: scss (historical), rcs (mostly
historical), cvs (built on top of rcs), subversion, git
(much more distributed), mercurial, sourcesafe, …

• The terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult – the basic concepts are the same

• cvs had the biggest mind-share for about a decade
(particularly in the open-source community)

• svn improves on several cvs shortcomings and is
widely used – we’ll learn basic svn

• git and mercurial are the hot new thing – distributed
version control – but core ideas are the same

3

The setup

• There is a svn repository, where files (and past versions)
are reliably stored.

– Hopefully the repository files are backed up, but that’s
not svn’s problem

• You do not edit files in the repository directly. Instead:

– You check-out a working copy and edit it

– You commit changes back to the repository

• You use the svn program to perform any operations that
need the repository

• One repository may hold many projects. A subversion
repository is just a database of projects and files.

– Looks like a filesystem tree of project directories

4

Tasks

Learn the common cases; look up the uncommon ones.

In a production shop…

• Create

– a repository (rare – every few years)

– a new project (infrequent – once or twice a year)

– a working copy of a project (every few weeks or months?)

• Working with files

– Get updates, add or remove files, commit changes to
repository (daily)

– Check version history, differences (as needed)

• Branches, locks, watches, others (every now and then)

Basic command structure is the same for all

svn svn-options cmd cmd-options files…

5

Repository access

A repository can be:

• Local: specify repository directory root via a regular

file path name url (file:///path...)

• Remote: lots of remote protocols supported (ssh,

https, …) depending on repository configuration

– Specify user-id and machine

– Usually need svn and ssh installed locally

– Need authentication (ssh password or other)

• HW6 uses https access to remove server

• Can experiment locally also

6

Getting started

• Set up a repository (your choice of name, location; we’ll do this
for you on hw6)

svnadmin create path/svnrepos

• Put initial version of project directory in repository

svn import projdir svn://path/svnrepos/proj -m msg

– Commands that update a repository require a message
(msg) that should briefly document the change

– Once a project is imported, never use the original directory
again (never! We really mean that!)

– Path depends on kind of access (local/remote)

• Check out a copy of the project to a working directory

cd working-directory

svn checkout svn://path/svnrepos/proj proj

– Working directory remembers repository location for future
checkin, update, etc.

• HW6: path to repository server is different – see writeup

7

File manipulation

• Add files with svn add (won’t be in repository if you don’t)

• Bring local working copy up to date with svn update (get
changed files from repository)

• Commit local changes with svn commit

– Any number of files including subdirectories recursively
if no filename specified

– Files not actually added to repository until commit

• Commit messages are mandatory

– -m “short message”

– -F filename-containing-message

– Else pop up editor if EDITOR or VISUAL environment
variable is set

– Else complain

8

Some examples

• Update local working directory to match repository

svn update

• Make changes (do via svn, not mv, cp, so repository will
also change on commit)

svn add file.c

svn move oldfile.c newfile.c

svn delete obsoletefile

• Commit changes

svn commit -m ‘‘this is much better’’

• Examine your changes

svn status

svn diff file.c

svn revert file.c

9

Conflicts

• This all works great if there is one working-copy. With multiple
working-copies there can be conflicts:

1. Your working-copy checks out version 17 of foo

2. You edit foo

3. Somebody else commits a new version (18) of foo

• Subversion tries to merge changes automatically; if it can’t you
must resolve the conflict. If svn commit fails:

– Do svn update to get repository version and attempt merge

• “G” means the automatic merge succeeded

• “C” means you have to resolve the conflict

– Merging is line-based, which is why svn is better for text
files

– Conflicts indicated in the working-copy file (search for
<<<<<<)

– Recent versions of svn handle more of this automatically or
interactively

10

svn gotchas

• Do not forget to add files or your group members will

be very unhappy.

• Keep in the repository exactly (and only) what you

need to build the application!

– Yes: foo.c foo.h Makefile

– No: foo.o a.out

– You don’t want versions of .o files etc.:

• Replaceable things have no value

• They change a lot when .c files change a little

• Developers on other machines can’t use them

11

Summary

• Another tool for letting the computer do what it’s good

at:

– Much better than manually emailing files, adding

dates to filenames, etc.

– Managing versions, storing the differences

– Keeping source-code safe

– Preventing concurrent access, detecting conflicts.

12

