
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 12 –C: structs, linked lists, and casts

Where we are

• We’ve seen most of the basic stuff about C, but we

still need to look at structs (aka records or objects

without methods) and linked data structures

– Understand the code posted with today’s lecture –

we won’t have time to walk through all the details

• Next: Rest of the C preprocessor (# stuff, macros),

building multi-file programs

• Then: more programming tools (make)

• That will set us up for the next programming project

– We’ll adjust timing on that depending on where we

get by the end of this week

2

structs

• A struct is a record (i.e., a collection of data fields)

• A pointer to a struct is like a Java object with no methods

• x.f is for field access. (if is x not a pointer – new!)

• (*x).f in C is like x.f in Java. (if x is a pointer)

• x->f is an abbreviation for (*x).f

• There is a huge difference between a struct (value)
parameter and a pointer to a struct

• There is a huge difference between local variables that
are structs and those that are pointers to structs

• Again, left-expressions evaluate to locations (which can
be whole struct locations or just a field’s location)

• Again, right-expressions evaluate to values (which can be
whole structs or just a field’s contents)

3

C parameters - revisited

• C has a uniform rule for parameters (almost): When a

function is called, each parameter is initialized with a

copy of the corresponding argument (int, char, ptr,…)

– This holds even for structs! – a copy is created

– There is no further connection between the

argument and the parameter value in the function

• But they can point to the same thing, of course

• But: if the argument is an array name, the function

parameter is initialized with a pointer to the array

argument instead of a copy of the entire array

– Implicit array promotion

4

struct parameters

• A struct argument is copied (call-by-value)

• It is far more common to use a pointer to a struct as an

argument instead of copying an entire struct

– Gives same semantics as Java object references

– Usually what you want – pointer to data that lives

outside the function

• Also avoids cost of copying a possibly large object

– But occasionally you want call-by value (small things

like complex numbers, geometric points, …)

• Puzzle: if an argument is an array containing a single

struct, is it copied or is it promoted to a pointer?

– What if it’s a struct containing only a single array?

5

Linked lists, trees, and friends

• Very, very common data structures

• Building them in C

– Use malloc to create nodes

– Need to use casts for “generic” types

– Memory management issues if shared nodes

– Usually need to explicitly free entire thing when
done

– Shows tradeoffs between lists and arrays

• Look at the sample code and understand what it
does/how it does it

6

C types

• There are an infinite number of types in C, but only a few
ways to make them:

– char, int, double, etc. (many variations like unsigned
int, long, short, …; mostly “implementation-defined”)

– void (placeholder; a “type” no expression can have)

– struct T where there is already a declaration for that
struct type

– Array types (basically only for stack arrays and struct
fields, every use is automatically converted to a pointer
type)

– t* where t is a type

– union T, enum E (later, maybe)

– function-pointer types (later)

– typedefs (just expand to their definition; type synonym)

7

Typedef

• Defines a synonym for a type – does not declare a new type

• Syntax

 typedef type name;

 After this declaration, writing name is the same as writing type

 Caution: array typedef syntax is weirder

• Examples:

 typedef int int32; // use int32 for portability

 typedef struct point { // type tag optional (sortof)

 int32 x, y;

 } Point2d; // Point2d is synonym for struct

 typedef Point2d * ptptr; // pointer to Point2D

 Point2d p; // var declaration

 ptptr ptlist; // declares pointer

8

Casts, part 1

• Syntax: (t)e where t is a type and e is an expression (same
as Java)

• Semantics: It depends

– If e is a numeric type and t is a numeric type, this is a
conversion

• To wider type, get same value

• To narrower type, may not (will get mod)

• From floating-point to integral, will round (may overflow)

• From integral to floating-point, may round (but int to
double is exact on most machines)

 Note: Java is the same without the “most machines” part

 Note: Lots of implicit conversions such as in function calls

 Bottom Line: Conversions involve actual operations;
(double)3 is a very different bit pattern than (int)3

9

Casts, part 2

• If e has type t1*, then (t2*)e is a (pointer) cast.

– You still have the same pointer (index into the address space).

– Nothing “happens” at run-time.

– You are just “getting around” the type system, making it easy to
write any bits anywhere you want.

– Old example: malloc has return type void*

void evil(int **p, int x) {

 int * q = (int*)p;

 *q = x;

}

void f(int **p) {

 evil(p,345);

 **p = 17; // writes 17 to address 345 (HYCSBWK)

}

Note: The C standard is more picky than we suggest, but few people know that and little code obeys the official rules.

10

C pointer casts, continued

Questions worth answering:

• How does this compare to Java’s casts?

– Unsafe, unchecked (no “type fields” in objects)

– Otherwise more similar than it seems

• When should you use pointer casts in C?

– For “generic” libraries (malloc, linked lists,

operations on arbitrary (generic) pointers, etc.)

– For “subtyping” (later)

• What about other casts?

– Casts to/from struct types (not struct pointer

casts) are compile-time errors.

11

