
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 10 – C: the heap and manual memory management

Pointer syntax

• A review (for completeness)

• Declare a variable to have a pointer type:

t * x; or t* x; or t *x; or t*x;

 (where t is a type and x is a variable)

• An expression to dereference a pointer:

*x (or more generally *e)

 where e is an expression

• C’s designers used the same character on purpose,

but declarations (create space) and expressions

(compute a value) are totally different things

2

Heap allocation

• So far, all of our ints, pointers, and arrays, have been
stack-allocated, which in C has two huge limitations:

– The space is reclaimed when the allocating function
returns

– The space required must be a constant (only an issue
for arrays)

• Heap-allocation has neither limitation

• Comparison: new T(...) in Java does all this:

– Allocate space for a T (exception if out-of-memory)

– Initialize the fields to null or 0

– Call the user-written constructor function

– Return a reference (hey, a pointer!) to the new object

• And the reference has a specific type: T

• In C, these steps are almost all separated

3

malloc, part 1

• malloc is “just” a library function: it takes a number,

heap-allocates that many bytes and returns a pointer

to the newly-allocated memory

– Returns NULL on failure

– Does not initialize the memory

– You must cast the result to the pointer type you

want

– You do not know how much space different values

need!

• Do not do things like malloc(17) !

4

malloc, part 2

• malloc is “always” used in a specific way:

(t*)malloc(e * sizeof(t))

• Returns a pointer to memory large enough to hold an

array of length e with elements of type t

• It is still not initialized (use a loop)!

– Underused friend: calloc (takes e and sizeof(t) as

separate arguments, initializes everything to 0)

• malloc returns an untyped pointer (void*); the cast (t*)

tells C to treat it as a pointer to a block of type t

5

Half the battle

• We can now allocate memory of any size and have it “live”
forever

• For example, we can allocate an array and use it
indefinitely

• Unfortunately, computers do not have infinite memory so
“living forever” could be a problem

• Java solution: Conceptually objects live forever, but the
system has a garbage collector that finds unreachable
objects and reclaims their space

• C solution: You explicitly free an object’s space by passing
a pointer to it to the library function free

• Freeing heap memory correctly is very hard in complex
software and is the disadvantage of C-style heap-
allocation

6

Everybody wants to be free(d once)

int * p = (int*)malloc(sizeof(int));

p = NULL; /* LEAK! */

int * q = (int*)malloc(sizeof(int));

free(q);

free(q); /* HYCSBWK */

int * r = (int*)malloc(sizeof(int));

free(r);

int * s = (int*)malloc(sizeof(int));

*s = 19;

r = 17; / HYCSBWK, but maybe *s==17 ?! */

• Problems much worse with functions:

– f returns a pointer; (when) should f’s caller free the
pointed-to object?

– g takes two pointers and frees one pointed-to object.
Can the other pointer be dereferenced?

7

The Rules

• For every run-time call to malloc there should be one run-
time call to free

• If you “lose all pointers” to an object, you can’t ever call
free (a leak)!

• If you “use an object after it’s freed” (or free it twice), you
used a dangling pointer!

• Note: It’s possible but rare to use up too much memory
without creating “leaks via no more pointers to an object”

• Interesting side-note: The standard-library must
“remember” how big the object is (but it won’t tell you)

– We will explore this further…

 later ….

8

