
 CSE 374 Final Exam Sample Solution 3/15/12

 Page 1 of 10

Question 1. (12 points) (strings and things) Write a function are_same that has two

parameters of type char* and returns:

 0 if the two parameters point to locations holding different string values,

 1 if the two parameters point to different locations holding the same string values

 2 if the two parameters point to the same location.

You may assume that both parameters point to arrays of characters that form properly

terminated C strings with '\0' at the end of each.

You should assume that any necessary standard library headers are already #included

and you do not need to write any #includes. You should use standard library

functions where appropriate.

Hint: strcmp(s,t) and strncmp(s,t,n) return 0 if string s and t are the same.

 int are_same(char * s, char * t) {

 if (s == t) {

 return 2;

 } else if (strcmp(s,t) == 0) {

 return 1;

 } else {

 return 0;

 }

A large number of answers had extraneous (size_t) and (int) casts in the

pointer comparisons. That is not needed when comparing pointers for equality and,

in the case of (int), could cause errors on 64-bit machines where pointer values

occupy 64 bits while ints only use 32. However, we did not deduct any points for

extra casts in either case.

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 2 of 10

Question 2. (12 points) (preprocessor) What output does the following program

produce? (It does compile and execute successfully.)

Hint: Watch out. x*y and y*x might do quite different things.

#include <stdio.h>

#define FOO(x,y) x + y

#define BAR(x,y) y * x

int main() {

 int a = 2;

 int b = 3;

 int c = 5;

 printf("%d\n", FOO(a+b,c));

 printf("%d\n", BAR(a+b,c));

 printf("%d\n", BAR(FOO(a,c),BAR(b,b)));

 return 0;

}

 10

 13

 23

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 3 of 10

Question 3. (12 points) (Memory management) Consider the following definition for

linked lists of strings in C and three functions that allegedly deallocate the space occupied

by a list.

struct node {

 char * s;

 struct snode * next;

};

void free_list_1(struct node * lst) {

 if (lst == NULL)

 return;

 free(lst);

}

void free_list_2(struct node * lst) {

 if (lst == NULL)

 return;

 free(lst->s);

 free_list_2(lst->next);

 free(lst);

}

void free_list_3(struct node * lst) {

 if (lst == NULL)

 return;

 free(lst);

 free(lst->s);

 free_list_3(lst->next);

}

(a) (8 points) Explain which of the three functions is best. Explain why the other two are

not well-written.

free_list_2 is the best one. free_list_1 causes a memory leak because it

only frees the first node struct in the list, without freeing any of the strings or

remaining nodes. free_list_3 is incorrect because it uses the dangling pointer

lst and the pointers in the associated free node struct after that struct has been

released. It may well “work” because the memory might not be reused or changed

until after free_list_3 finishes, but it is not correct.

(b) (4 points) Explain what assumption(s) are implicitly made in the best function and

how the function is wrong if the assumption(s) are violated.

The main assumption is that there are no cycles in the free list and that each node

points to a distinct string (char array). If those assumptions are violated,

free_list_3 will perform duplicate free operations on some nodes or strings.

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 4 of 10

Question 4. (8 points) (debugging) You have been assigned to debug a program that is

crashing for some reason. You have narrowed the problem down to a set of C functions

that implement a list of strings. The four functions involved are:

 init(); // must call this first before any others

 add(char * s) // add s to the list

 delete(char * s) // delete s from the list if present

 size() // return number of strings in the list

The list package requires that function init() be called before any of the other three

can be used successfully. Your guess is that somehow one of the other functions is being

called first, but your boss wants you to prove this before any more time or effort is spent

on the problem.

Explain how you could use gdb to discover whether one of the other functions are called

before init(). You may not make any modification(s) to any of the source files, but

you may recompile code as needed.

1. Recompile all code with gcc -g to ensure debugging information is

available.

2. Start gdb to debug the program.

3. Set breakpoints at the beginning of each of the four functions init, add,

delete, and size.

4. Run the program. If a breakpoint is reached, and if it is at the beginning of

any of the functions other than init, you have confirmed your hypothesis

that one of the other three functions was called before init.

Question 5. (8 points) (svn) Suppose you are using svn for a group project. You

decide to move some of the code in file foo.c into a new file bar.c. You have

updated the makefile appropriately.

(a) What svn command(s) should you use before your next commit?

 svn add bar.c

(b) If you forget to do the commands from your answer to part (a), who will discover

your forgetfulness and when?

One of your colleagues will discover the problem when they try to build the

program after performing a svn update operation.

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 5 of 10

Question 6. (16 points) (t9) Suppose we extended our data structure for the t9 trie to

keep track of how many times each word in the trie has been accessed:

 struct t9node { /* t9 trie node */

 char *w; /* word associated with this node */

 /* or NULL if no word stored here. */

 int nlookups; /* number of times this word w has been */

 /* accessed. Not defined if w==NULL. */

 struct t9node * child[10];

 /* pointers to subtrees of this t9 node. */

 /* child[2]-child[9] are sub-trees for */

 /* digits 2-9. child[0] is the # subtree */

 /* for words with the same digits as w. */

 /* Pointers to empty subtrees are NULL. */

 };

Complete the definition of function max_word below so it returns a pointer to the word

w in the trie with the maximum associated nlookups value. If there is more than one

word with the same maximum value, return a pointer to any one of them (i.e., break ties

however you wish). You should assume that any necessary standard library headers are

already #included and you do not need to write any #includes. Hint: recursion.

You may define additional function(s) if needed as part of your solution. The next page

is blank if you need more room.

 /* return word with max # lookups in trie with root r */

 char * max_word(struct t9node * r) {

 return max_node(r)->w;

 }

(Rest of answer on the next page.)

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 6 of 10

Question 6. (cont.) Additional space if needed.

 /* Return pointer to t9node with w!=NULL and largest */

 /* nlookups value in the subtree with root r, or NULL */

 /* if there are no words in the subtree with root r. */

 struct t9node * max_node(struct t9node * r) {

 struct t9node * ans; // best known answer so far

 struct t9node * temp;

 int k;

 // if this subtree is empty return NULL

 if (r == NULL) {

 return NULL;

 }

 // Initialize ans to result of searching '#' link

 ans = max_node(r->child[0]);

 // Search subtrees for digits 2-9 for better answer

 for (k = 2; k <= 9; k++) {

 temp = max_node(r->child[k]);

 if (temp != NULL &&

 (ans==NULL || ans->nlookups < temp->nlookups)){

 ans = temp;

 }

 }

 // if this node contains a more frequent word than any

 // subtree, this node is the answer

 if (r->w != NULL &&

 (ans == NULL || r->nlookups > ans->nlookups)) {

 ans = r;

 }

 return ans;

 }

The conditions in the two if statements are somewhat subtle since the ordering

relies on short-circuit evaluation both to update the result when the first non-NULL

value is found and to ensure both pointers are not NULL when comparing

nlookups values.

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 7 of 10

Question 7. (14 points) (make) Suppose we have the following collection of C header

and implementation files.

foo.h

#ifndef FOO_H

#define FOO_H

#include "common.h"

...

#endif

bar.h

#ifndef BAR_H

#define BAR_H

...

#endif

common.h

#ifndef COMMON_H

#define COMMON_H

...

#endif

foo.c

#include "foo.h"

...

bar.c

#include "bar.h"

#include "foo.h"

...

thing.c

#include "common.h"

#include "bar.h"

int main() { ... }

These source files are to be used to build an executable program file named thing,

whose main function is in the source file thing.c. The program calls functions

located in all three of the .c files above.

Answer the questions on the next page using the above information. You may remove

this page from the exam if it makes it easier to use.

 (Suggestion: sketch your answer to part (a) below or on the back of the page before you

make a clean copy of it on the next page.)

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 8 of 10

Question 7. (cont.) (a) Recall that we can specify the dependencies between files in a

program using a graph, where there is an arrow drawn from each file name to the file(s) it

depends on. For example, the drawing to the left shows how we would diagram a

program named x that depends on (is built from) x.o, which in turn depends on x.c.

In the space below, draw a graph (diagram) showing the dependencies between the

executable program thing and all of the source (.c), header (.h), and compiled (.o)

files involved in building it from the files on the previous page.

 foo.h common.h bar.h

 foo.c bar.c thing.c

 foo.o bar.o thing.o

 thing

(b) Write the contents of a Makefile whose default target builds the program thing,

and which only recompiles individual files as needed. Your Makefile should reflect

the dependency graph you drew in part (a).

 thing: foo.o bar.o thing.o

 gcc –Wall –g –o thing foo.o bar.o thing.o

 foo.o: foo.c foo.h common.h

 gcc –Wall –g –c foo.c

 bar.o: bar.c foo.h bar.h common.h

 gcc –Wall –g –c bar.c

 thing.o: thing.c common.h bar.h

 gcc –Wall –g –c thing.c

x.c

x.o

x

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 9 of 10

Question 8. (18 points) (memory management) In the memory manager assignment,

the freemem function had to search the free list for the proper location to add a returned

block to the list and possibly merge it with other free blocks. A different way to handle

this is known as the boundry-tag method. Here, in addition to the header at the front of

every block, there is additional information in a trailer following each block containing a

pointer back to the beginning of the block and a true/false value indicating whether the

block is currently allocated. Every block in the heap has a header and trailer struct,

whether it is currently allocated to a user program or not. Here are definitions for the

header and trailer structs that surround each block:

 struct header { // block header:

 size_t size; // number of data bytes in the block

 // without the header/trailer

 struct header* next; // next block on the free list or NULL

 };

 struct trailer { // block trailer:

 struct header* hdr; // address of header for this block

 size_t allocated; // 1 if block allocated, 0 if free

 };

Here is an illustration of a free block with 160 bytes of user storage whose header is at

location 10000. The block plus header and trailer occupy 160+16+16 = 192 bytes.

 10000 +--------+--------+ (8 byte pointers and size_t

 | 160| “next”| variables used in this problem)

 10016 +--------+--------+

 | |

 | |

 | 160 bytes of |

 | user storage |

 | ... |

 | |

 | |

 10176 +--------+--------+

 | 10000| 0|

 10192 +--------+--------+

The idea behind the boundry-tag method is that we can decide whether to merge adjacent

blocks by looking at the header and trailer of adjacent blocks without having to search the

free list. Given a free block, we can merge it with the block that precedes it in storage if

that block has a 0 in the allocated field of its trailer. The trailer of the previous block

is located in the 16 bytes immediately preceding the header of the current block.

Complete function merge_with_previous on the following page so it examines the

storage immediately preceding the block whose header address is given as the parameter

and, if it is also a free block, merges the two of them into a single larger block on the free

list. Feel free to remove this page from the exam while you are working if you wish.

 CSE 374 Final Exam Sample Solution 3/15/12

 Page 10 of 10

Question 8 (cont.) Complete the function below.

 /* Given a pointer to the header of free block b, if the */

 /* block immediately preceding b in storage is also a free */

 /* block, merge the two blocks into a single free block, */

 /* and update the fields in the header and trailer of the */

 /* resulting combined block as needed. */

 void merge_with_previous(struct header * b) {

 // trailer of previous block

 struct trailer * prev_trailer;

 // header of previous block

 struct header * prev_header;

 // trailer of current block b

 struct trailer * b_trailer;

 // locate previous trailer

 prev_trailer = (struct trailer *)(((size_t) b)-16);

 // exit if previous block is not free

 if (prev_trailer->allocated == 1)

 return;

 // locate previous header and current trailer

 prev_header = prev_trailer->hdr;

 b_trailer =

 (struct trailer *) (((size_t) b) + b->size + 16);

 // set length of previous block to total length and

 // set back pointer of combined block to prev_header

 prev_header->size = prev_header->size + b->size + 32;

 b_trailer->hdr = prev_header;

 // set combined block to “free” (not required,

 // assuming both blocks were free before merging)

 b_trailer->allocated = 0;

 }

During the exam we announced that it was okay to assume that block b was

immediately preceded by another block, so it was unnecessary to handle the special

case if it were the first block on the free list.

This answer assumes that b is not yet on the free list so its next pointer can be

ignored and the free list links do not need to be updated. But solutions that

changed the next pointers assuming that b was already on the free list were also

okay.

