
CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011

Lecture 13 – C: The Rest of the Preprocessor

The story so far…

• We’ve looked at the basics of the preprocessor
– #include to access declarations in header files
– #define for symbolic constants

• Now:
– More details; where it fits
– Multiple source and header files
– A bit about macros (somewhat useful, somewhat a

warning)

2

The compilation picture

gcc does all this for you (reminder)
• -E to only preprocess; result on stdout (rare)
• -c to stop with .o (common for individual files in larger

program)

3

More about multiple files

Typical usage:
• Preprocessor #include to read file containing

declarations describing code
• Linker handles your .o files and other code

– By default, the “standard C library”
– Other .o and .a files
– Whole lecture on linking and libraries later…

4

The preprocessor

• Rewrites your .c file before the compiler gets at the code.
– Lines starting with # tell it what to do.

• Can do crazy things (please don’t); uncrazy things are:
1. Including contents of header files
2. Defining constants and parameterized macros

• Token-based, but basically textual replacement
• Easy to misdefine and misuse

3. Conditional compilation
• Include/exclude part of a file
• Example uses: code for debugging, code for

particular computers (handling portability issues),
“the trick” for including header files only once

5

File inclusion (review)

#include <hdr.h>
• Search for file hdr.h in “standard include directories” and

include its contents in this place
– Typically lots of nested includes, result not fit for

human consumption
– Idea is simple: declaration of standard library routines

are in headers; allows correct use after declaration
#include “hdr.h”

– Same, but first look in current directory
– How to break your program into smaller files that can

call routines in other files
• gcc -I option: look first in specified directories for headers

(keep paths out of your code files) (not needed for 374)

6

Header file conventions

Conventions: always follow these when writing a header file
1. Give included files names ending in .h; only include these

header files. Never #include a .c source file
2. Do not put functions definitions in a header file; only struct

definitions, prototypes (declarations), and other includes
3. Do all your #includes at the beginning of a file
4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#endif

(We will learn why very soon.)

7

Simple macros (review)

Symbolic constants and other text
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

• Replaces all matching tokens in rest of file
– Knows where “words” start and end (unlike sed)
– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use

#undef to remove)

8

Macros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; } // best (editorial opinion)

• Replace all matching “calls” with “body” but with text of
arguments where the parameters are (just string substitution)

• Gotchas (understand why!):
y=3; z=4; w=TWICE_AWFUL(y+z);
y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

• Common misperception: Macros avoid performance overhead of
a function call (maybe true in 1975, not now)

• Macros can be more flexible though (TWICE_OK works on ints
and doubles without conversions (which could round))

9

Justifiable uses

Parameterized macros are generally to be avoided (use
functions), but there are things functions cannot do:

#define NEW_T(t,howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

10

Conditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use: #ifdef DEBUG // do following only when debugging

printf(...);
#endif

Fancier: #ifdef DEBUG // use DBG_PRINT for debug-printing
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

• Note: gcc -D FOO makes FOO “defined”

11

Back to header files

• Now we know what this means:
#ifndef SOME_HEADER_H
#define SOME_HEADER_H
... rest of some_header.h ...
#endif

• Assuming nobody else defines SOME_HEADER_H
(convention), the first #include "some_header.h" will do
the define and include the rest of the file, but the second
and later will skip everything
– More efficient than copying the prototypes over and

over again.
– In presence of circular includes, necessary to avoid

“creating” an infinitely large result of preprocessing.
• So we always do this.

12

C preprocessor summary

• A few easy to abuse features and a bunch of
conventions (for overcoming C’s limitations).
– #include (cycles fine with “the trick”, the way you

say what other definitions you need)
– #define (avoids magic constants; parameterized

macros have a few justifiable uses; token-based
text replacement)

– #if... (for showing the compiler less code)

13

