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Where we are

 We've seen most of the basic stuff about C, but we
still need to look at structs (aka records or objects
without methods) and linked data structures

— Understand the code posted with today’s lecture —
we won't have time to walk through all the details

 Next: Rest of the C preprocessor (# stuff, macros),
building multi-file programs

e Then: more programming tools (make)

« That will set us up for the next programming project

 Meanwhile: Midterm exam on Monday

— Closed book, optional page of handwritten notes



Structs

e A structis arecord

e A pointer to a struct is like a Java object with no methods
o X.fis for field access. (if is X not a pointer — new!)

e (*x).fin C s like x.f in Java. (if X Is a pointer)

e X->fis an abbreviation for (*x).f

 There is a huge difference between a struct (value)
parameter and a pointer to a struct

e There Is a huge difference between local variables that
are structs and those that are pointers to structs

e Again, left-expressions evaluate to locations (which can
be whole struct locations or just a field’s location)

e Again, right-expressions evaluate to values (which can be
whole structs or just a field’s contents)



C parameters - revisited

e C has a uniform rule for parameters (almost): When a
function is called, each parameter is initialized with a
copy of the corresponding argument (int, char, ptr,...)

— This holds even for structs! — a copy is created

— There is no further connection between the
argument and the parameter value in the function

e But they can point to the same thing, of course

e But: if the argument is an array name, the function
parameter is initialized with a pointer to the array
argument instead of a copy of the entire array

— Implicit array promotion



Struct parameters

e A struct argument is copied (call-by-value)

It is far more common to use a pointer to a struct as an
argument instead of copying an entire struct

— Glves same semantics as Java object references

— Usually what you want — pointer to data that lives
outside the function

» Also avoids cost of copying a possibly large object

— But occasionally you want call-by value (small things
like complex numbers, points, ...)

Puzzle: if an argument is an array containing a single
struct, is it copied or is it promoted to a pointer?

— What if it’s a struct containing only a single array?



Linked lists, trees, and friends

« Very, very common data structures
e Building them in C
— Use malloc to create nodes
— Need to use casts for “generic” types
— Memory management issues if shared nodes

— Usually need to explicitly free entire thing when
done

— Shows tradeoffs between lists and arrays

 Look at the sample code and understand what it
does/how it does it



C types

 There are an infinite number of types in C, but only a few
ways to make them:

— char, int, double, etc. (many variations like unsigned
Int, long, short, ...; mostly “implementation-defined”)

— void (placeholder; a “type” no expression can have)

— struct T where there Is already a declaration for that
struct type

— Array types (basically only for stack arrays and struct
flelds, every use is automatically converted to a pointer

type)
— t* where tis a type
— union T, enum E (later, maybe)
— function-pointer types (later)
— typedefs (just expand to their definition; type synonym)



Typedef

* Defines a synonym for a type — does not declare a new type
e Syntax
typedef type name;
After this declaration, writing name is the same as writing type
 Examples:

typedef int int32; I/ use Iint32 for portability

typedef struct point { /] type tag optional (sortof)
INt32 X, v;

} Point2d; // Point2d is synonym for struct

typedef Point2d * ptptr; // pointer to Point2D

Point2d p; /[ var declaration
ptptr ptlist; /[ declares pointer



Casts, part 1

o Syntax: (t)e where tis a type and e is an expression (same as
Java)

 Semantics: It depends

— If e Is a numeric type and t is a numeric type, this is a
conversion

* To wider type, get same value
* To narrower type, may not (will get mod)
* From floating-point to integral, will round (may overflow)

* From integral to floating-point, may round (but int to
double is exact on most machines)

Note: Java is the same without the “most machines” part
Note: Lots of implicit conversions such as in function calls

Bottom Line: Conversions involve actual operations;
(double)3 is a very different bit pattern than (int)3



Casts, part 2

« |f e has type t1*, then (t2*)e is a (pointer) cast.
— You still have the same pointer (index into the address space).
— Nothing “happens” at run-time.

— You are just “getting around” the type system, making it easy to
write any bits anywhere you want.

— Old example: malloc has return type void*

void evil(int **p, int x) {
int * q = (int*)p;
*q - X,
}
void f(int **p) {
evil(p,345);
**p =17, /[ writes 17 to address 345 (HYCSBWK)

}

Note: The C standard is more picky than we suggest, but few people know that and little code obeys the official rules.
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C pointer casts, continued

Questions worth answering:

 How does this compare to Java’s casts?
— Unsafe, unchecked (no “type fields” in objects)
— Otherwise more similar than it seems

 When should you use pointer casts in C?

— For “generic” libraries (malloc, linked lists,
operations on arbitrary (generic) pointers, etc.)

— For “subtyping” (later)
« What about other casts?

— Casts to/from struct types (not struct pointer casts)
are compile-time errors.
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