CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011
Lecture 12 —C: structs, linked lists, and casts

Where we are

 We've seen most of the basic stuff about C, but we
still need to look at structs (aka records or objects
without methods) and linked data structures

— Understand the code posted with today’s lecture —
we won't have time to walk through all the details

 Next: Rest of the C preprocessor (# stuff, macros),
building multi-file programs

e Then: more programming tools (make)

« That will set us up for the next programming project

 Meanwhile: Midterm exam on Monday

— Closed book, optional page of handwritten notes

Structs

e A structis arecord

e A pointer to a struct is like a Java object with no methods
o X.fis for field access. (if is X not a pointer — new!)

e (*x).fin C s like x.f in Java. (if X Is a pointer)

e X->fis an abbreviation for (*x).f

 There is a huge difference between a struct (value)
parameter and a pointer to a struct

e There Is a huge difference between local variables that
are structs and those that are pointers to structs

e Again, left-expressions evaluate to locations (which can
be whole struct locations or just a field’s location)

e Again, right-expressions evaluate to values (which can be
whole structs or just a field’s contents)

C parameters - revisited

e C has a uniform rule for parameters (almost): When a
function is called, each parameter is initialized with a
copy of the corresponding argument (int, char, ptr,...)

— This holds even for structs! — a copy is created

— There is no further connection between the
argument and the parameter value in the function

e But they can point to the same thing, of course

e But: if the argument is an array name, the function
parameter is initialized with a pointer to the array
argument instead of a copy of the entire array

— Implicit array promotion

Struct parameters

e A struct argument is copied (call-by-value)

It is far more common to use a pointer to a struct as an
argument instead of copying an entire struct

— Glves same semantics as Java object references

— Usually what you want — pointer to data that lives
outside the function

» Also avoids cost of copying a possibly large object

— But occasionally you want call-by value (small things
like complex numbers, points, ...)

Puzzle: if an argument is an array containing a single
struct, is it copied or is it promoted to a pointer?

— What if it’s a struct containing only a single array?

Linked lists, trees, and friends

« Very, very common data structures
e Building them in C
— Use malloc to create nodes
— Need to use casts for “generic” types
— Memory management issues if shared nodes

— Usually need to explicitly free entire thing when
done

— Shows tradeoffs between lists and arrays

 Look at the sample code and understand what it
does/how it does it

C types

 There are an infinite number of types in C, but only a few
ways to make them:

— char, int, double, etc. (many variations like unsigned
Int, long, short, ...; mostly “implementation-defined”)

— void (placeholder; a “type” no expression can have)

— struct T where there Is already a declaration for that
struct type

— Array types (basically only for stack arrays and struct
flelds, every use is automatically converted to a pointer

type)
— t* where tis a type
— union T, enum E (later, maybe)
— function-pointer types (later)
— typedefs (just expand to their definition; type synonym)

Typedef

* Defines a synonym for a type — does not declare a new type
e Syntax
typedef type name;
After this declaration, writing name is the same as writing type
 Examples:

typedef int int32; I/ use Iint32 for portability

typedef struct point { /] type tag optional (sortof)
INt32 X, v;

} Point2d; // Point2d is synonym for struct

typedef Point2d * ptptr; // pointer to Point2D

Point2d p; /[var declaration
ptptr ptlist; /[declares pointer

Casts, part 1

o Syntax: (t)e where tis a type and e is an expression (same as
Java)

 Semantics: It depends

— If e Is a numeric type and t is a numeric type, this is a
conversion

* To wider type, get same value
* To narrower type, may not (will get mod)
* From floating-point to integral, will round (may overflow)

* From integral to floating-point, may round (but int to
double is exact on most machines)

Note: Java is the same without the “most machines” part
Note: Lots of implicit conversions such as in function calls

Bottom Line: Conversions involve actual operations;
(double)3 is a very different bit pattern than (int)3

Casts, part 2

« |f e has type t1*, then (t2*)e is a (pointer) cast.
— You still have the same pointer (index into the address space).
— Nothing “happens” at run-time.

— You are just “getting around” the type system, making it easy to
write any bits anywhere you want.

— Old example: malloc has return type void*

void evil(int **p, int x) {
int * q = (int*)p;
*q - X,
}
void f(int **p) {
evil(p,345);
**p =17, /[writes 17 to address 345 (HYCSBWK)

}

Note: The C standard is more picky than we suggest, but few people know that and little code obeys the official rules.

10

C pointer casts, continued

Questions worth answering:

 How does this compare to Java’s casts?
— Unsafe, unchecked (no “type fields” in objects)
— Otherwise more similar than it seems

 When should you use pointer casts in C?

— For “generic” libraries (malloc, linked lists,
operations on arbitrary (generic) pointers, etc.)

— For “subtyping” (later)
« What about other casts?

— Casts to/from struct types (not struct pointer casts)
are compile-time errors.

11

