
CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011

Lecture 11 – gdb and Debugging

Agenda

• Debuggers, particularly gdb
• Why?

– To learn general features of breakpoint-debugging
– To learn specifics of gdb
– To learn general debugging “survival skills”

• Skill #1: don’t panic!

2

An execution monitor?

• What would you like to “see inside” and “do to” a
running program?

• Why might all that be helpful?
• What are reasonable ways to debug a program?
• A “debugger” is a tool that lets you stop running

programs, inspect (sometimes set) values, etc.
– A “CAT scan” for observing executing code

3

Issues

• Source information for compiled code. (Get compiler help)
• Stopping your program too late to find the problem. (Art)
• Trying to “debug” the wrong algorithm
• Trying to “run the debugger” instead of understanding the

program
• It’s an important tool
• Debugging C vs. Java

– Eliminating crashes does not make your C program
correct

– Debugging Java is “easier” because (some) crashes
and memory errors do not exist

– But programming Java is “easier” for the same reason!

4

gdb

• gdb (Gnu debugger) is part of the standard Linux toolchain.
• gdb supports several languages, including C compiled by gcc.
• Modern IDEs have fancy GUI interfaces, which help, but

concepts are the same.
• Compiling with debugging information: gcc -g

– Otherwise, gdb can tell you little more than the stack of
function calls.

• Running gdb: gdb executable
– Source files should be in same directory (or use the -d flag).

• At prompt: run args
• Note: You can also inspect core files, which is why they get

saved.
– (Mostly useful for analyzing crashed programs after-the-fact,

not for systematic debugging. The original use of db.)

5

Basic functions

• backtrace
• frame, up, down
• print expression, info args, info locals
Often enough for “crash debugging”
Also often enough for learning how “the compiler does

things” (e.g., stack direction, malloc policy, ...)

6

Breakpoints

• break function (or line-number or ...)
• conditional breakpoints (break XXX if expr)

1. to skip a bunch of iterations
2. to do assertion checking

• going forward: continue, next, step, finish
– Some debuggers let you “go backwards”

(typically an illusion)
• Often enough for “binary search debugging”
• Also useful for learning program structure (e.g., when

is some function called)
• Skim the manual for other features.

7

A few tricks

• Everyone develops their own “debugging tricks”; here
are a few:
– Printing pointer values to see how big objects

were.
– Always checking why a seg-fault happened

(infinite stack and array-overflow very different)
– “Staring at code” even if it does not crash
– Printing array contents (especially last elements)
– . . .

8

Advice

• Understand what the tool provides you
• Use it to accomplish a task, for example “I want to know

the call-stack when I get the NULL-pointer dereference”
• Optimize your time developing software

– Think of debugging as a systematic experiment to
discover what’s wrong — not a way to randomly poke
around

• Use development environments that have debuggers?
• See also: jdb for Java
• Like any tool, takes extra time at first but designed to save

you time in the long run
– Education is an investment

9

gdb summary – running programs

• Be sure to compile with gcc –g
• Open the program with: gdb <executable file>
• Start or restart the program: run <command args>
• Quit the program: kill
• Quit gdb: quit
• Reference information: help

• Most commands have short abbreviations
• <return> often repeats the last command

– Particularly useful when stepping through code

10

gdb summary – looking around

• bt – stack backtrace
• up, down – change current stack frame
• list – display source code (list n, list <function name>)
• print expression – evaluate and print expression
• display expression –(re-)evaluate and print

expression every time execution pauses.
– undisplay – remove an expression from this

recurring list.

11

gdb summary – breakpoints, stepping

• break – set breakpoint. (break <function name>, break
<linenumber>, break <file>:<linenumber>)

• info break – print table of currently set breakpoints
• clear – remove breakpoints
• disable/enable – temporarily turn breakpoints off/on

without removing them from the breakpoint table

• continue – resume execution to next breakpoint or end of
program

• step – execute next source line
• next – execute next source line, but treat function calls as

a single statement and don't step into them
• finish – execute to the conclusion of the current function

– How to recover if you meant “next” instead of “step”

12

