
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 22 Sh d M CLecture 22 – Shared-Memory Concurrency

ConcurrencyConcurrency

• Computation where “multiple things happen at the same p p g pp
time” is inherently more complicated than sequential
computation

• Entirely new kinds of bugs and obligationsEntirely new kinds of bugs and obligations
• Two forms of concurrency:

– time-slicing: only one computation at a time but
preempt to provide responsiveness or mask I/O latency

– true parallelism: more than one CPU (e.g., new
consumer machines have two, newer machines have ,
4-8, your laptop has ?, …)

• No problem unless the different computations need to
communicate or use the same resourcescommunicate or use the same resources

2

Example: processesExample: processes

• The O/S runs multiple processes “at once”.p p
• Why? (Convenience, efficient use of resources,

performance)
• No problem: keep their address spaces separate• No problem: keep their address-spaces separate.
• But they do communicate/share via files (and pipes).
• Things can go wrong, e.g., a race condition:

echo "hi" > someFile
foo=‘cat someFile‘
assume foo holds the string “hi”??# assume foo holds the string “hi”??

• The O/S provides synchronization mechanisms to
avoid this (see CSE 410)

3

The old storyThe old story

• We said a running Java or C program had code, a heap,
global variables, a stack, and “what is executing right now”
(in assembly, a program counter).

• C, Java support parallelism similarly (other languages can
be different):
– One pile of code, global variables, and heap.
– Multiple “stack + program counter”s — called threadsp p g
– Threads can be pre-empted whenever by a scheduler
– Threads can communicate (or mess each other up) via

shared memoryshared memory.
• Various synchronization mechanisms control what thread

interleavings are possible.
“Do not do your thing until I am done with my thing”– Do not do your thing until I am done with my thing

4

Threads in C and JavaThreads in C and Java

C: The POSIX Threads (pthreads) library(p) y
#include <pthread.h>

• Link with –lpthread
• pthread_create takes a function pointer and an

argument for it; runs it as a separate thread.
Many types functions macros for threads locks etc• Many types, functions, macros for threads, locks, etc.

Java: Built into the language
• Subclass java lang Thread overriding runSubclass java.lang.Thread overriding run
• Create a Thread object and call its start method
• Any object can “be synchronized on” (later)y j y ()

5

Why do this?Why do this?

Convenient structure of code
• Example: two threads using information computed by the

other
• Example: failure-isolation – each “file request” in its own

thread so if a problem just “kill that request”thread so if a problem just kill that request
• Example: Fairness – one slow computation only takes

some of the CPU time without your own complicated timer
code. Avoids starvationcode. Avoids starvation

Performance
• Run other threads while one is reading/writing to disk (or

other slow thing that can happen in parallel)g pp p)
• Use more than one CPU at the same time

– The way computers will get faster over the next decade
– So no parallelism means no faster.So o pa a e s ea s o aste

6

Simple synchronizationSimple synchronization

• If one thread did nothing of interest to any other thread,
why is it running?

• So threads have to communicate and coordinate.
– Use each others’ results; avoid messing up each ; g p

other’s computation.
• Simplest two ways not to mess each other up (don’t

underestimate!):)
1. Do not access the same memory.
2. Do not mutate shared memory.

• Next simplest: One thread does not run until/unless• Next simplest: One thread does not run until/unless
another thread is done
– Called a join

7

Using parallel threadsUsing parallel threads

A common pattern for expensive computations:p p p
• Split the work
• Join on all the helper threads
• Called fork-join parallelism

To avoid bottlenecks, each thread should have about
the same amount of work (load-balancing)

• Performance depends on number of CPUs availablePerformance depends on number of CPUs available
and will typically be less than “perfect speedup”

8

Less structureLess structure

• Often you have a bunch of threads running at once y g
and they might need the same mutable memory at
the same time but probably not.
W t t b t ith t ifi i ll li• Want to be correct without sacrificing parallelism.

• Example: A bunch of threads processing bank
transactions:transactions:
– withdraw, deposit, transfer, currentBalance, ...
– chance of two threads accessing the same

account at the same time very low, but not zero.
– want mutual exclusion (a way to keep each other

out of the way when there is contention)out of the way when there is contention)

9

The issueThe issue

struct Acct { int balance; /* ... other fields ... */ };{ }

int withdraw(struct Acct * a, int amt) {
if(>b l < t) t 1 // 1 f ilif(a->balance < amt) return 1; // 1==failure
a->balance -= amt;
return 0; // 0==successreturn 0; // 0 success

}
• This code is correct in a sequential program.
• It may have a race condition in a concurrent program,

allowing a negative balance.
• Discovering this bug is very hard with testing since g g y g

the interleaving has to be “just wrong”.
10

atomicatomic

Program must indicate what must appear to happen all-at-once.
int withdraw(struct Acct * a, int amt) {

atomic {
if(a->balance < amt) return 1; // 1==failure
a->balance -= amt;

}
return 0; // 0==success

}
Reasons not to do “too much” in an atomic:
• Correctness: If another thread needs an intermediate result to

compute something you need, must “expose” it.
• Performance: Parallel threads must access disjoint memory

– Actually read/read conflicts can happen in parallely pp p

11

Getting it “just right”Getting it just right

• This code is probably wrong because critical sections too p y g
small:

atomic { if(a->balance < amt) return 1; }
atomic { a >balance = amt; }atomic { a->balance -= amt; }

• This code (skeleton) is probably wrong because the
critical section is too big:
– Assume other guy does not compute until data is set

atomic {
data for other guy = 42; // set some globaldata_for_other_guy = 42; // set some global
ans = wait_for_other_guy_to_compute();
return ans;

}
12

So farSo far

• Shared-memory concurrency where multiple threads
might access the same mutable data at the same time is
tricky
– Must get size of critical sections just right

• It’s worse because
– atomic does not yet exist in languages like C and Java

• Instead programmers must use locks (a k a mutexes) orInstead programmers must use locks (a.k.a. mutexes) or
other mechanisms, usually to get the behavior of critical
sections
– But misuse of locks will violate the “all-at-once”But misuse of locks will violate the all at once

property
– Or lead to other bugs we haven’t seen yet

13

Lock basicsLock basics

A lock is acquired and released by a thread.q y
• At most one thread “holds it” at any moment
• Acquiring it “blocks” until the holder releases it and

the blocked thread acquires it
– Many threads might be waiting; one will “win”.

The lock implementer avoids race conditions on– The lock-implementer avoids race conditions on
the lock-acquire

• So to keep two things from happening at the same p g pp g
time, surround them with the same lock-acquire/lock-
release

14

Locks in C/JavaLocks in C/Java

• C: Need to initialize and destroy mutexes (a synonym y (y y
for locks).
– The joys of C

• An initialized (pointer to a) mutex can be locked or
unlocked via library function calls.

• Java: A synchronized statement is an acquire/• Java: A synchronized statement is an acquire/
release.
– Any object can serve as a lock.
– Lock is released on any control-transfer out of the

block (return, break, exception, ...)
“S h i d th d ” j t k t k– “Synchronized methods” just save keystrokes

15

Choosing how to lockChoosing how to lock

• Now we know what locks are (how to make them, what
acquiring/releasing means), but programming with them
correctly and efficiently is difficult...
– As before, if critical sections are too small we have

races; if too big we may not communicate enough to
get our work done efficiently.

– But now, if two “synchronized blocks” grab different
locks, they can be interleaved even if they access the
same memory

• A “data race”
– Also, a lock-acquire blocks until a lock is available and

only the current-holder can release it.
• Can have “deadlock” ...

16

DeadlockDeadlock
Object a;
Object b;Object b;

void m1() { void m2() {
synchronized a { synchronized b {synchronized a { synchronized b {
synchronized b { synchronized a {

... ...
}} } }} }}} } }} }

• A cycle of threads waiting on locks means none will ever run
again!
A id All d i l k i th d (h d• Avoidance: All code acquires locks in the same order (very hard
to do). Ad hoc: Don’t hold onto locks too long or while calling
into unknown code.

• Recovery: detect deadlocks, kill off and rerun one of the y ,
processes (databases)

17

Rules of thumbRules of thumb

• Any one of the following are sufficient for avoiding races:
– Keep data thread-local (an object is reachable, or at

least only accessed by, one thread).
– Keep data read-only (do not assign to object fields p y (g j

after an object’s constructor)
– Use locks consistently (all accesses to an object are

made while holding a particular lock)g p)
– Use a partial-order to avoid deadlock (over-simple

example: do not hold multiple locks at once?)
• These are tough invariants to get right but that’s the priceThese are tough invariants to get right, but that s the price

of multithreaded programming today.
• But... one way to do all the above is to have “one lock for

all shared data” and that is inefficientall shared data and that is inefficient...

18

False sharingFalse sharing

• “False sharing” refers to not allowing separate things g g p g
to happen in parallel. Example:

synchronized x { synchronized x {
++y; ++z;++y; ++z;

} }
• More realistic example: one lock for all bank accounts

rather than one for each account
• On the other hand, acquiring/releasing locks is not so

cheap, so “locking more with the same lock” cancheap, so locking more with the same lock can
improve performance.

• This is the “locking granularity” question
C fi l it– Coarser vs. finer granularity

19

What about this?What about this?

• If each bank account has its own lock, how do you , y
write a “transfer” method such that no other thread
can see the “wrong total balance”?
// race (not data race) // potential deadlock// race (not data race) // potential deadlock
void xfer(int a,Acct other){ void xfer(int a,Acct other){

synchronized(this) { synchronized(this) {
balance += a; synchronized(other) {
other.balance -= a; balance += a;

} other.balance -= a;} ;
} }}}

• The problem is there is no relative order among
t “i t f ” ld d dl kaccounts, so “inverse transfers” could deadlock

20

A final gotchaA final gotcha

• You would naturally assume that all memory accesses y y
happen in “some consistent order” that is “determined by
the code”.

• Unfortunately compilers and chips are often allowed toUnfortunately, compilers and chips are often allowed to
cheat (reorder)! The assertion in the right thread may fail!

initially flag==false
data = 42; while(!flag) { }
flag = true; assert(data==42);

• To disallow reordering the programmer must:To disallow reordering the programmer must:
– Use lock acquires (no reordering across them), or
– Declare flag to be volatile (for experts, not us)

21

ConclusionConclusion

• Threads make a lot of otherwise-correct approaches pp
incorrect.
– Writing “thread-safe” libraries can be excruciating.
– Use an expert implementation, e.g., Java’s

ConcurrentHashMap?
• But they are increasingly important for efficient use of• But they are increasingly important for efficient use of

computing resources (“the multicore revolution”).
• Locks and shared-memory are (just) one common

approach

22

