
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 15 T tiLecture 15 – Testing

Where we areWhere we are

• Some very basic “software engineering” topics in the y g g p
midst of tools
– Today: testing (how, why, some terms)
– Later: (partial) specification

“Test your software or your users will”Test your software or your users will
Hunt & Thomas

The Pragmatic Programmerg g

2

Testing and Bugs – Is Dijkstra Right?Testing and Bugs Is Dijkstra Right?

“Program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate
f h i th i b ”for showing their absence.”

Edsger DijkstraEdsger Dijkstra
1972 Turing Award Lecture

htt // b t d / EWD/t i ti /EWD03 /EWD340 ht lhttp://userweb.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

3

Testing 1 2 3Testing 1, 2, 3

• Role of testing and its plusses/minusesg p
• Unit testing or “testing in the small”
• Stubs, or “cutting off the rest of the world” (which

might not exist yet)

4

A little theoryA little theory

• Testing is very limited and difficult:g y
– Small number of inputs
– Small number of calling contexts, environments,

compilers, …
– Small amount of observable output

Requires more things to get right e g test code– Requires more things to get right, e.g., test code
• Standard coverage metrics (statement, branch, path)

are useful but only emphasize how limited it is.y p

5

How much is enough?How much is enough?

• This code is supposed to compute something resembling pp p g g
C’s “a or b” function. How do we test it? How many tests
do we need? What kinds of tests should they be?

int f(int a int b) {int f(int a, int b) {
int ans = 0;
if(a)

ans += a;
if(b)

ans += b;ans += b;
return ans;

}

6

Three coverage metricsThree coverage metrics

int f(int a, int b) {
int ans = 0;
if(a)

ans += a;
if(b)

ans += b;
return ans;

}
• Statement coverage: f(1,1) sufficient
• Branch coverage: f(1,1) and f(0,0) sufficientg (,) (,)
• Path coverage: f(0,0), f(1,0), f(0,1), f(1,1) sufficient
• But even the example path-coverage test suite suggests f

is a correct “or” function for C; it is not.

7

Colored boxesColored boxes

“black box” vs “white box”
• black-box: test a unit without looking at its

implementation
Pros: don’t make same mistakes think in terms of– Pros: don t make same mistakes, think in terms of
interface, independent validation

– Basic example: remember to try negative numbers
• white-box: test a unit while looking at its

implementation
– Pros: can be more efficient, can find thePros: can be more efficient, can find the

implementation’s corner cases
– Basic example: try loop boundaries, “special

constants” max valuesconstants , max values, …

8

StubsStubs

• Unit testing (a small group of functions) vs. integration
testing (combining units) vs. system testing (the “whole
thing” whatever that means)

• How to test units (“code under test”) when the other code:
– may not exist
– may be buggy
– may be large and slowmay be large and slow

• Answer: You provide a “fake implementation” of the other
code that “works well enough for the tests”

Fake implementation is as small as possible so the– Fake implementation is as small as possible, so the
functions are often called “stubs”

• Tools like JUnit et seq. exist to support unit testing — take
advantage of them when they make senseadvantage of them when they make sense

9

Stubbing techniquesStubbing techniques

It’s an art, not a science. Some useful techniques:, q
• Instead of computing a function, use a small table of

pre-encoded answers
• Return wrong answers that won’t mess up what

you’re testing
• Don’t do things (e g print) that won’t be missed• Don t do things (e.g., print) that won t be missed
• Use a slower algorithm
• Use an implementation of fixed size (an array instead p (y

of a list?)
• ... other ideas?

10

Eat your vegetablesEat your vegetables

• Make tests:
– early
– easy to run (e.g., a make target with an automatic diff

against sample output)
th t t t i t ti d ll d t d ti– that test interesting and well-understood properties

– that are as well-written and documented as other code
• Write the tests first! (seems odd until you do it)
• Write much more code than the “assignment requires you

turn-in”
• Manually or automatically compute test-inputs and right-

answers?answers?
• Write regression tests and run on each version to ensure

bugs do not creep in for stuff that “used to work”.

11

Testing – of whatTesting of what

• Summary: Testing has some concepts worth knowing y g p g
and using
– Coverage (statement, branch, path)
– White-box vs. black-box
– Stubbing

But we made a big assumption that we know what• But we made a big assumption, that we know what
the code is supposed to do!

• Specification is a topic we need to talk more about…p p

… and we will, later.

12

