
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 8 C Mi llLecture 8 – C: Miscellanea
Control, Declarations, Preprocessor, printf/scanf

The story so farThe story so far…

• The low-level execution model of a process (one address
space)space)

• Basics of C:
– Language features: functions, pointers, arrays
– Idioms: Array-lengths ’\0’ terminatorsIdioms: Array lengths, \0 terminators

• Today – a collection of core C idioms/ideas:
– Control Constructs, ints as booleans
– Declarations & Definitions
– Source file structure
– Two important “sublanguages” used a lot in C

• The preprocessor: runs even before the compiler
– Simple #include and #define for now; more later

• printf/scanf: formatted I/O
– Really just a library though

• Next time: lvalues rvalues arrays & pointers; then structs &• Next time: lvalues, rvalues, arrays & pointers; then structs &
memory allocation

2

Control constructsControl constructs

• while, if, for, break, continue, switch: much like Java
• Key difference: No built-in boolean type; use ints (or

pointers)
Anything but 0 (or NULL) is true– Anything but 0 (or NULL) is true.

– 0 and NULL are false.
– C99 did add a bool library but use is still sporadic/

optional
• goto much maligned, but makes sense for some

tasks (more general than Java’s labeled break)tasks (more general than Java s labeled break)
• Gotcha: switch cases fall-through unless there is an

explicit transfer (typically a break), just like Java

3

Declarations and Definitions (1)Declarations and Definitions (1)

• C makes a careful distinction between these two
• Declaration: introduces a name and describes its

properties (type, # parameters, etc), but does not
t itcreate it

– ex. Function prototype: int twice(int x);
• Definition: the actual thing itself• Definition: the actual thing itself

– ex. Function implementation:
int twice(int x) { return 2*x; }() { ; }

4

Declarations and Definitions (2)Declarations and Definitions (2)

• An item may be declared as many times as neededy y
– although often only once per scope or file (i.e.,

can’t declare the same name twice in a scope)
• An item must be defined exactly once

– e,g., there must be a single definition of each
function in only one file no matter how many filesfunction in only one file no matter how many files
contain a definition of it or use it

5

Forward ReferencesForward References

• No forward references:
– A function must be defined or declared before it is

used. (Lying: “implicit declaration” warnings, return type
assumed int)assumed int, ...)

– Linker error if something is used but not defined
(including main)(g)

• Use -c to not link yet (more later).
– To write mutually recursive functions, you just

(f)need a (forward) declaration.

6

Some (more) glitchesSome (more) glitches

• Declarations must precede statements in a “block”p
– But any statement can be a block, so use { … } if

you need to
Or use std=c99 gcc compiler option– Or use --std=c99 gcc compiler option

• Array variables in code must have a constant size
– So the compiler knows how much space to

allocate
– (C99 has an extension to relax this; rarely used)
– Arrays whose size depends on runtime– Arrays whose size depends on runtime

information are allocated on the heap (next time)
– Large arrays are best allocated on the heap also,

if t t i lth h t i deven if constant size, although not required

7

More gotchasMore gotchas

• Declarations in C are funky:y
– You can put multiple declarations on one line, e.g., int

x, y; or int x=0, y; or int x, y=0;, or ...
But int *x y; means int *x; int y; you usually mean int– But int *x, y; means int *x; int y; – you usually mean int
*x, *y;

– Common style rule: one declaration per line (clarity,
safety)

• Variables holding arrays have super-confusing (but
convenient) rules…)
– Array types in function arguments are pointers(!)
– Referring to an array doesn’t mean what you think (!)

“ ” ()• “implicit array promotion” (later)

8

The preprocessorThe preprocessor

• Rewrites your .c file before the compiler gets at the y p g
code.
– Lines starting with # tell it what to do.

• Can do crazy things (please don’t); uncrazy things
are:
1 Including contents of header files1. Including contents of header files
2.Defining constants (now) and parameterized

macros (textual-replacements) (later)
3.Conditional compilation (later)

9

File inclusionFile inclusion

#include <foo.h>
• Search for file foo.h in “system include directories” (on

fedora /usr/include and subdirs) for foo.h and include its
preprocessed contents (recursion!) at this place
– Typically lots of nested includes, so result is a mess

nobody looks at (use gcc –E if you want a look!)
– Idea is simple: declaration for fgets is in stdio.h (use p g (

man for what file to include)
• #include "foo.h" the same but first look in current directory

– How you break your program into smaller files and stillHow you break your program into smaller files and still
make calls to functions other files.

• gcc -I dir1 -I dir2 ... look in these directories for header
files first (keeps paths out of your code files) Wefiles first (keeps paths out of your code files). We
probably won’t need to use this

10

Simple macros & symbolic constantsSimple macros & symbolic constants

#define M_PI 3.14 // capitals a convention to avoid problems
#d fi DEBUG LEVEL 1#define DEBUG_LEVEL 1
#define NULL 0 // already in standard library

• Replace all matching tokens in the rest of the file• Replace all matching tokens in the rest of the file.
– Knows where “words” start and end (unlike sed)
– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use #undef)(Rare: can shadow with another #define or use #undef)

#define foo 17
void f() {() {
int food = foo; // becomes int food = 17; (ok)
int foo = 9+foo+foo; // becomes int 17 = 9+17+17; (nonsense)

}

11

Typical file layoutTypical file layout

• Not a formal rule, but good conventional style

// includes for functions & types defined elsewhere
#include <stdio.h>
#include …
// global variables (if any)
static int days per month[] = { 31 28 31 30 };static int days_per_month[] = { 31, 28, 31, 30, …};
// function prototypes (to handle “declare before use”)
void some_later_function(char, int);
// function definitions
void do_this() { … }
char * return that(char s[], int n) { … }c a etu _t at(c a s[], t) { }
int main(int argc, char ** argv) { … }

12

printf and scanfprintf and scanf

• “Just” two library functions in the standard libraryy y
– Prototypes in stdio.h

• Example: printf("%s: %d %g\n", p, y+9, 3.0)
• They can take any number of arguments

– You can define functions like this too, but it is
rarely useful arguments are usually not checkedrarely useful, arguments are usually not checked
and writing the function definition is a pain.

• Not covered in 374
• The f is for “format” – crazy characters in the format

string control formatting

13

The rulesThe rules

• To avoid HYCSBWK:
– Number of arguments better match number of %
– Corresponding arguments better have the right

types (%d int; %f float; %e float (prints scientific);types (%d, int; %f, float; %e, float (prints scientific);
%s, \0-terminated char*; … (look them up))

• For scanf, arguments must be pointers to the right
t f thi (d i t d i t thtype of thing (reads input and assigns to the
variables)
– So int* for %d, but still char* for %s (not char**)()

int n; char *s;
…

scanf(“%d %s” &n s);scanf(%d %s , &n, s);

14

More funny charactersMore funny characters

• Between the % and the letter (e.g., d) can be other (g ,)
things that control formatting (look them up; we all
do)

P ddi (idth) %12d %012d– Padding (width) %12d %012d
– Precision . . .
– Left/right justification– Left/right justification . . .

• Know what is possible; know that other people’s code
may look funny.

15

More on scanfMore on scanf

• Check for errors (scanf returns number of % sucessfully
t h d)matched)

– maybe the input does not match the text
– maybe some “number” in the input does not parse as a

numbernumber
• Always bound your strings

– Or some external data could lead to arbitrary behavior
(common so rce of ir ses inp t a long string• (common source of viruses; input a long string
containing evil code)

– Remember there must be room for the \0
%s reads up to the next whitespace– %s reads up to the next whitespace

Example: scanf("%d:%d:%d", &hour, &minutes, &seconds);
Example: scanf("%20s", buf)

(better have room for ≥20 characters)(better have room for ≥20 characters)

16

