CSE 374 Programming Concepts & Tools

Hal Perkins Spring 2010 Lecture 8 – C: Miscellanea Control, Declarations, Preprocessor, printf/scanf

The story so far...

- The low-level execution model of a process (one address space)
- Basics of C:
 - Language features: functions, pointers, arrays
 - Idioms: Array-lengths, '\0' terminators
- Today a collection of core C idioms/ideas:
 - Control Constructs, ints as booleans
 - Declarations & Definitions
 - Source file structure
 - Two important "sublanguages" used a lot in C
 - The preprocessor: runs even before the compiler
 - Simple #include and #define for now; more later
 - printf/scanf: formatted I/O
 - Really just a library though
- Next time: Ivalues, rvalues, arrays & pointers; then structs & memory allocation

Control constructs

- while, if, for, break, continue, switch: much like Java
- Key difference: No built-in boolean type; use ints (or pointers)
 - Anything but 0 (or NULL) is true.
 - 0 and NULL are false.
 - C99 did add a bool library but use is still sporadic/ optional
- goto much maligned, but makes sense for some tasks (more general than Java's labeled break)
- Gotcha: switch cases fall-through unless there is an explicit transfer (typically a break), just like Java

Declarations and Definitions (1)

- C makes a careful distinction between these two
- Declaration: introduces a name and describes its properties (type, # parameters, etc), but does not create it
 - ex. Function prototype: int twice(int x);
- *Definition*: the actual thing itself
 - ex. Function implementation:

int twice(int x) { return 2*x; }

Declarations and Definitions (2)

- An item may be *declared* as many times as needed
 - although often only once per scope or file (i.e., can't declare the same name twice in a scope)
- An item must be *defined* exactly once
 - e,g., there must be a single definition of each function in only one file no matter how many files contain a definition of it or use it

Forward References

- No forward references:
 - A function must be defined or declared before it is used. (Lying: "implicit declaration" warnings, return type assumed int, ...)
 - Linker error if something is used but not defined (including main)
 - Use -c to not link yet (more later).
 - To write mutually recursive functions, you just need a (forward) declaration.

Some (more) glitches

- Declarations must precede statements in a "block"
 - But any statement can be a block, so use { ... } if you need to
 - Or use --std=c99 gcc compiler option
- Array variables in code must have a constant size
 - So the compiler knows how much space to allocate
 - (C99 has an extension to relax this; rarely used)
 - Arrays whose size depends on runtime information are allocated on the heap (next time)
 - Large arrays are best allocated on the heap also, even if constant size, although not required

More gotchas

- Declarations in C are funky:
 - You can put multiple declarations on one line, e.g., int
 x, y; or int x=0, y; or int x, y=0;, or ...
 - But int *x, y; means int *x; int y; you usually mean int *x, *y;
 - Common style rule: one declaration per line (clarity, safety)
- Variables holding arrays have super-confusing (but convenient) rules...
 - Array types in function arguments are pointers(!)
 - Referring to an array doesn't mean what you think (!)
 - "implicit array promotion" (later)

The preprocessor

- Rewrites your .c file before the compiler gets at the code.
 - Lines starting with # tell it what to do.
- Can do crazy things (please don't); uncrazy things are:
 - 1. Including contents of header files
 - 2. Defining constants (now) and parameterized macros (textual-replacements) (later)
 - 3. Conditional compilation (later)

File inclusion

#include <foo.h>

- Search for file foo.h in "system include directories" (on fedora /usr/include and subdirs) for foo.h and include its preprocessed contents (recursion!) at this place
 - Typically lots of nested includes, so result is a mess nobody looks at (use gcc –E if you want a look!)
 - Idea is simple: declaration for fgets is in stdio.h (use man for what file to include)
- #include "foo.h" the same but first look in current directory
 - How you break your program into smaller files and still make calls to functions other files.
- gcc -I dir1 -I dir2 ... look in these directories for header files first (keeps paths out of your code files). We probably won't need to use this

Simple macros & symbolic constants

#define M_PI 3.14 // capitals a convention to avoid problems
#define DEBUG_LEVEL 1
#define NULL 0 // already in standard library

- Replace all matching *tokens* in the rest of the file.
 - Knows where "words" start and end (unlike sed)
 - Has no notion of scope (unlike C compiler)
 - (Rare: can shadow with another #define or use #undef)

```
#define foo 17
void f() {
    int food = foo;    // becomes int food = 17; (ok)
    int foo = 9+foo+foo; // becomes int 17 = 9+17+17; (nonsense)
}
```

Typical file layout

• Not a formal rule, but good conventional style

// includes for functions & types defined elsewhere #include <stdio.h> #include ... // global variables (if any) static int days_per_month[] = { 31, 28, 31, 30, ...}; // function prototypes (to handle "declare before use") void some_later_function(char, int); // function definitions void do_this() { ... } char * return_that(char s[], int n) { ... } int main(int argc, char ** argv) { ... }

printf and scanf

- "Just" two library functions in the standard library – Prototypes in stdio.h
- Example: printf("%s: %d %g\n", p, y+9, 3.0)
- They can take any number of arguments
 - You can define functions like this too, but it is rarely useful, arguments are usually not checked and writing the function definition is a pain.
 - Not covered in 374
- The f is for "format" crazy characters in the format string control formatting

The rules

- To avoid HYCSBWK:
 - Number of arguments better match number of %
 - Corresponding arguments better have the right types (%d, int; %f, float; %e, float (prints scientific); %s, \0-terminated char*; ... (look them up))
- For scanf, arguments must be pointers to the right type of thing (reads input and assigns to the variables)
 - So int* for %d, but still char* for %s (not char**) int n; char *s;

```
...
scanf("%d %s", &n, s);
```

More funny characters

- Between the % and the letter (e.g., d) can be other things that control formatting (look them up; we all do)
 - Padding (width) %12d %012d
 - Precision . . .
 - Left/right justification . . .
- Know what is possible; know that other people's code may look funny.

More on scanf

- Check for errors (scanf returns number of % successfully matched)
 - maybe the input does not match the text
 - maybe some "number" in the input does not parse as a number
- Always bound your strings
 - Or some external data could lead to arbitrary behavior
 - (common source of viruses; input a long string containing evil code)
 - Remember there must be room for the $\0$
 - %s reads up to the next whitespace

Example: scanf("%d:%d", &hour, &minutes, &seconds); Example: scanf("%20s", buf)

(better have room for \geq 20 characters)