
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009

L t 21 F ti P i t d Obj t i CLecture 21 – Function Pointers and Objects in C

Function pointersFunction pointers

• “Pointers to code” are almost as useful as “pointers to p
data”. (But the syntax is painful in C.)

• (Somewhat silly) example:
void app arr(int len int * arr int (*f)(int)) {void app_arr(int len, int * arr, int (*f)(int)) {

for(int k = 0; k < len; k++)
arr[k] = (*f)(arr[k]);[] ()([])

}
int twoX(int i) { return 2*i; }
i t (i t i) { t i*i }int sqr(int i) { return i*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twoX);}
void sqr arr(int len, int* arr) { app arr(len,arr,&sqr); }o d sq _a (t e , t a) { app_a (e ,a ,&sq); }

2

C function-pointer syntaxC function pointer syntax

• C syntax: painful and confusing. Rough idea: The compiler y p g g p
“knows” what is code and what is a pointer to code, so you
can write less than we did on the last slide:

arr[k] = (*f)(arr[k]);arr[k] (f)(arr[k]);
⇒ arr[k] = f(arr[k]);

app_arr(len,arr,&twoX);
⇒ app_arr(len,arr,twoX);

• For types, let’s pretend you always have to write the
“pointer to code” part (i e t0 (*)(t1 t2 tn)) and forpointer to code part (i.e., t0 ()(t1,t2,...,tn)) and for
declarations the variable or field name goes after the *.

• Sigh.

3

What is an object?What is an object?

First Approximationpp

• An object consists of data and methods
– Provides the correct (conceptual) model
– Easy to explain

• But…
Doesn’t make engineering sense we don’t want– Doesn t make engineering sense — we don t want
to replicate the (same) method bodies (function
code) in every object

4

What is an object?What is an object?

Second Approximation
• An object consists of data and pointers to methods
• The compiler adds an additional, implicit “this” parameter

to every method holding a reference to the receiver object
Gi th th d t f t th i t– Gives the method a way to refer to the instance
variables of the correct receiver object

– Actual method (function) code has no other connection
to any particular objectto any particular object

• Avoids code duplication

ButBut. . .
• Still wastes space for pointers to every class function in

every object, particularly if there is relatively little instance
data, or if the class has a large number of methodsdata, o t e c ass as a a ge u be o et ods

5

What is an object?What is an object?

How it’s really done
• There is a single “virtual function” table (vtable) for each

class containing pointers to the methods of that class.
– This is static constant class data – does not changeThis is static, constant class data does not change

during execution; initialized at load/startup time
• An object consists of data and a pointer to its class vtable
• Method calls are indirect through the vtable
• Each method still has an implicit this parameter that refers

to the receiving objectg j
• Avoids code duplication
• Avoids method pointer duplication

C t i di t i t l k d i h f ti ll• Costs an indirect pointer lookup during each function call

6

Inheritance and overridingInheritance and overriding

Basic ideas:
• We have a vtable for every class and subclass
• The vtable for a subclass points to the correct methods —

either ones belonging to the base class that are inherited, g g ,
or ones belonging to the subclass (added or overriding)

• Key idea: The initial part of the vtable for a subclass points
to the methods that are inherited or overridden from the
base class in exactly the same order they appear in the
base class vtable
– So compiled code can find the correct method at the p

same offset in the vtable whether it is overridden or not
• Use casts as needed to adjust references up and down

the inheritance chain

7

