
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009

L t 19 I t d ti t CLecture 19 – Introduction to C++

C++C++

C++ is an enormous language:g g
• All of C
• Classes and objects (kind of like Java, some crucial

differences)differences)
• Many more little conveniences (I/O, new/delete,

function overloading, pass-by-reference, bigger
t d d lib)standard library)

• Namespaces (kind of like Java packages)
• Stuff we won’t do: const, different kinds of casts,Stuff we won t do: const, different kinds of casts,

exceptions, templates, multiple inheritance, …
• We will focus on a couple themes rather than just a

“big bag of new features to memorize”big bag of new features to memorize …

2

Our focusOur focus

Object-oriented programming in a C-like language may
h l d t d C d J b tt ?help you understand C and Java better?

• We can put objects on the stack or the heap; an object is
not a pointer to an objectnot a pointer to an object

• Still have to manage memory manually
• Still lots of ways to HCBWKMSCOD*

Still disting ish header files from implementation files• Still distinguish header files from implementation files
• Allocation and initialization still separate concepts, but

easier to “construct” and “destruct”
• Programmer has more control on how method calls work• Programmer has more control on how method-calls work

(different defaults from Java)

*hopefully crash, but who knows – might silently corrupt other datap y , g y p

3

Hello WorldHello World

#include <iostream>
int main() {

// Use standard output stream cout
// and operator << to send "Hello World"// and operator << to send Hello World
// and an end line to stdout
std::cout << "Hello World" << std::endl;

t 0return 0;
}

• Differences from C: “new-style” headers (no .h),
namespace access (::), I/O via stream operators, …

• Differences from Java: not everything is in a class, any
code can go in any file, …
– Can write procedural programs if that’s what you want

4

CompilingCompiling

• Need a different compiler than for C; use g++ on p ; g
Linux. Example:

g++ -Wall -o hello hello.cc
• The .cc extension is a convention (just like .c for C),

but less universal (also see .cpp, .cxx, .C).
• Uses the C preprocessor (no change there)• Uses the C preprocessor (no change there).
• Now: A few “niceties” before our real focus (classes

and objects).

5

I/OI/O

• Operator << takes a “ostream” and (various things) and
t t it t th t hi h i h thi koutputs it; returns the stream, which is why this works:

std::cout << 3 << "hi" << f(x) << ’\n’;
– Easier and safer than printf (type safe)

O t t k “i t ” d (i thi) d• Operator >> takes “istream” and (various things) and
inputs into it.
– Easier and safer than scanf. Do not use pointers; e.g.,

int std cin >>int x; std::cin >> x;
• Can “think of” >> and << as keywords, but they are not:

– Operator overloading redefines them for different pairs
of typesof types.

• In C and core C++ they mean “left-shift” and “right-
shift” (of bits); undefined for non-numeric types.

– Lack of address-of for input done with call-by-reference– Lack of address-of for input done with call-by-reference
(coming soon).

6

NamespacesNamespaces

• In C, all non-static functions in the program need different
names
– Even operating systems with tens of millions of lines.

• Namespaces (cf. Java packages) let you group top-level names:
namespace thespace { ... definitions ... }

– Of course, then different namespaces can have the same
function names and they are totally different functions.
C t th– Can nest them

– Can reuse the same namespace in multiple places
• Particularly common: in the .h and the .cc

• Example, the whole C++ standard library is in namespace std.
• To use a function/variable/etc. in another namespace, do

thespace::someFun() (not . like in Java)

7

UsingUsing

• To avoid having to write namespaces and :: g p
constantly, use a using declaration

• Example:
#include <iostream>
using namespace std;
int main() {int main() {

cout << "Hello World" << endl;
return 0;return 0;

}

8

Onto Classes and ObjectsOnto Classes and Objects

Like Java:
• Fields vs. methods, static vs. instance, constructors
• Method overloading (functions, operators, and

constructors too))
Not quite like Java:
• access-modifiers (e.g., private) syntax and default
• declaration separate from implementation (like C)• declaration separate from implementation (like C)
• funny constructor syntax, default parameters (e.g., ... = 0)
Nothing like Java:
• Objects vs. pointers to objects
• Destructors and copy-constructors
• virtual vs. non-virtual (to be discussed)tua s o tua (to be d scussed)

9

Stack vs heapStack vs. heap

• Java: cannot stack-allocate an object (only a pointer to
one; all objects are dynamically allocated on the heap).

• C: can stack-allocate a struct, then initialize it.
• C++: stack-allocate and call a constructor (where this is (

the object’s address, as always, except this is a pointer)
Thing t(10000);

• Java: new Thing() calls constructor returns heap-Java: new Thing(...) calls constructor, returns heap
allocated pointer.

• C: Use malloc and then initialized, must free exactly once
later untyped pointerslater, untyped pointers.

• C++: Like Java, new Thing(…), but can also do new
int(42). Like C must deallocate, but must use delete
instead of freeinstead of free.

10

DestructorsDestructors

• An object’s destructor is called just before the space j j p
for it is reclaimed.

• A common use: Reclaim space for heap-allocated
thi i t d t (fi t lli th i d t t)things pointed to (first calling their destructors).
– But not if there are other pointers to it (aliases)?!

• Meaning of delete x: call the destructor of pointed-to• Meaning of delete x: call the destructor of pointed-to
heap object, then reclaim space.

• Destructors also get called for stack-objects (when
they leave scope).

• Advice: Always make destructors virtual (learn why
soon)soon)

11

ArraysArrays

Create a heap-allocated array of objects: new A[10];
• Calls default (zero-argument) constructor for each

element.
• Convenient if there’s a good default initialization.
C t h ll t d f i t t bj tCreate a heap-allocated array of pointers to objects:

new A*[10]
• More like Java (but not initialized?)

As in C ne A() and ne A[10] ha e t pe A*• As in C, new A() and new A[10] have type A*.
• new A* and new A*[10] both have type A**.
• Unlike C, to delete a non-array, you must write delete e

U lik C t d l t t it d l t []• Unlike C, to delete an array, you must write delete [] e
• Else HYCSBWK – the deleter must know somehow what

is an array.

12

Digression: Call-by-referenceDigression: Call by reference

• In C, we know function arguments are copies, g p
– But copying a pointer means you still point to the

same (uncopied) thing
• Same in C++, but a “reference parameter” (the &

character after it) is different.
• Callee writes: void f(int& x) { x = x + 1; }• Callee writes: void f(int& x) { x = x + 1; }
• Caller writes: f(y)
• But it’s as though the caller wrote f(&y) and g (y)

everywhere the callee said x they really said *x.
• So that little & has a big meaning.

13

Copy ConstructorsCopy Constructors

• In C, we know x=y or f(y) copies y (if a struct, then , y (y) p y (,
member-wise copy).

• Same in C++, unless a copy-constructor is defined,
th d h t itthen do whatever it says.

• A copy-constructor by definition takes a reference
parameter (else we’d need to copy, but that’s whatparameter (else we d need to copy, but that s what
we’re defining) of the same type.

• Let’s not talk about the const.
– OK, well maybe a little

14

Still to comeStill to come

• So far we have classes and objects (class instances)j ()
– Enough for many interesting types, particularly

small concrete types like strings, complex, date,
ti ttime, etc.

• For full object-oriented programming we still need
(and have) subclassing, inheritance, and related(and have) subclassing, inheritance, and related
things
– Many similarities with Java, but more options and

diff t d f ltdifferent defaults

15

