
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009

L t 18 Li ki d Lib iLecture 18 – Linking and Libraries

Intro to linkingIntro to linking

• Linking is just one example of “using stuff in other g j p g
files”...

• In compiling and running code, one constantly needs
other files and programs that find them.other files and programs that find them.

• Examples:
– C preprocessor #include
– C libraries (where is the code for printf and malloc)

• Usually you’re happy with programs “automatically
finding what you need” so the complicated rules canfinding what you need so the complicated rules can
be hidden.

• Today we will demystify and make generalizations.

2

The compilation picture (revisited)The compilation picture (revisited)

Old story, but new details…

3

Common questionsCommon questions

1. What you are looking for?y g
2. When are you looking for it?
3. Where are you looking?
4. What problems do cycles cause?
5. How do you change the answers?

• Old friends: files, function names, paths, environment
variables command-line flags scripts configurationvariables, command line flags, scripts, configuration
files, ...

4

#include files – what really happens?#include files what really happens?

cpp (invoked implicitly by gcc or g++ on files ending in pp (p y y g g g
.c, .cc, .cpp, etc.).

• What: files named “foo” when encountering #include
<f > #i l d "f " (t h i j t ti)<foo> or #include "foo" (note .h is just a convention).

• When: When the preprocessor is run (making x.i from
x.c, although usually you don’t see this).x.c, although usually you don t see this).

• Where: “include path”: current-directory, directories
chosen when cpp is installed (e.g., /usr/include),
di t i li t d i INCLUDE h ll i bldirectories listed in INCLUDE shell variable,
directories listed via -I flags, ...

5

more #includemore #include…

• The rules on “what overrides what” exist, but tough to
remember.

• Can look at result to see “what really happened”.
• Example: for nested #include, the original current-p , g

directory or the header file’s current-directory?
• Example: Why shouldn’t you run cpp on one machine and

compile the results on another?p
What about cycles?
• File a.c calls functions in file b.c which calls functions in

file a c whichfile a.c which …
• Not a problem – put declarations in header files and

include each header file as needed. Actual function
definitions aren’t circulardefinitions aren t circular

6

Compiled code – o filesCompiled code .o files

• So far we have talked about finding source code to g
create compiled code (.o files for C).

• These files are not whole applications, so we have
th ti f “fi di th th d ”the same questions for “finding the other code”.
– printf, malloc, getmem (called from main), …

• A o file is not “runnable” – you have to actually link it• A .o file is not runnable – you have to actually link it
with the other code to make an executable.

• Linking (ld, or called via gcc or g++) is a “when”
between compiling and executing.

• Again, gcc usually hides this from you, but it helps to
know what is going onknow what is going on.

7

LinkingLinking

• If a C file uses but does not define a function (or global (g
variable) foo, then the .o has “unresolved references”.
Declarations don’t count; only definitions.

• The linker takes multiple o files and “patches them” toThe linker takes multiple .o files and patches them to
include the references. (It literally moves code and
changes instructions like function calls.)
An e ec table m st ha e no nresol ed references (o• An executable must have no unresolved references (you
have seen this error message).

• What: Definitions of functions/variables
• When: The linker creates an executable
• Where: Other .o files on the command-line (and much

more)more...)

8

More about whereMore about where

• The linker and O/S don’t know anything about main or the
C library.

• That’s why gcc “secretly” links in other things.
• We can do it ourselves, but we would need to know a lot ,

about how the C library is organized. Get gcc to tell us:
– gcc -v -static hello.c
– Should be largely understandableShould be largely understandable.
– -static (a simple “get all the code you need into a.out”

story for now)
the secret * o files: (they do the stuff before main gets– the secret .o files: (they do the stuff before main gets
called, which is why gcc gives errors about main not
being defined).

9

ArchivesArchives

• An archive is roughly a tar file, but with extra header
information about the .o files in it

• Create with ar program (lots of features, but fundamentally
take .o files and put them in, but order matters).

• The semantics of passing ld an argument like -lfoo is
complicated and often not what you want:
– Look for what: file libfoo.a (ignoring shared libraries for (g g

now), when: at link-time, where: defaults, environment
variables, and the -L flags (analogous to -I).

– Go through the .o files in libfoo.a in order.g
• If a .o defines a needed reference, include the .o.
• Including a .o may add more needed references.
• Continue• Continue.

10

The rules for linkingThe rules for linking

• A call to ld (or gcc for linking) has .o files and -lfoo options
in left-to-right order.

• State: “Set of needed functions not defined” initially empty.
• Action for .o file:

– Include code in result
– Remove from set any functions defined

Add to set any functions used and not yet defined– Add to set any functions used and not yet defined
• Action for .a file: For each .o in the archive, in order

– If it defines one or more functions in set, do all 3 things
d f filwe do for a .o file.

– Else do nothing.
• At end, if set is empty create executable, else error.

11

Library gotchasLibrary gotchas

1. Position of -lfoo on command-line matters
– Only resolves references for “things to the left”
– So -lfoo typically put “on the right”

2 C l2. Cycles
– If two .o files in a .a need each other, you’ll have to

link the library in (at least) twice!
– If two .a files need each other, you might do -lfoo –

lbar -lfoo -lbar -lfoo ...
– (There are command-line options to do this for– (There are command-line options to do this for

you, but not the default.)
3. If you include math.h, then you’ll need -lm.

12

Another gotchaAnother gotcha

4. No repeated function namesp
– Two .o files in an executable can’t have (public)

functions of the same name.
• Can have static functions with the same name!

(“static” on a function means not externally
visible)visible)

– Can get burned by library functions you do not
know exist, but only if you need another function
f th filfrom the same .o file.

• (Solution: 1 public function per file?!)

13

Dynamic LinkingDynamic Linking

• The basic static linking model has disadvantages:
– Uses lots of disk space (copy library functions for every

application)
– More memory when programs are running (what if the y p g g (

O/S could have different processes magically share
code?).

• So we can link later:
– Shared libraries (link when program starts executing).

Saves disk space. O/S can share actual memory
behind your back (if/because code is immutable).y ()

– Dynamically linked/loaded libraries. Even later (while
program is running). Devil is in the details.

• “DLL hell” – if the version of a library on a machine is notDLL hell if the version of a library on a machine is not
the one the program was tested with. . . .

14

SummarySummary

• Things like “standard libraries” “header files” “linkers” g
etc. are not magic.

• But since you rarely need fine-grained control, you
il f t h t t l t i ll i li it thieasily forget how to control typically-implicit things.

(You don’t need to know any of this until you need to
know it ☺)

• There’s a huge difference between source code and
compiled code (a header file and an archive are quite
different)different).

• The linker includes files from archives using strange
rules.

15

