
Name:

CSE 303, Spring 2006, Midterm Examination
1 May 2006

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one 8.5x11in piece of paper (both sides).

• Please stop promptly at 3:20.

• You can rip apart the pages, but please write your name on each page.

• There are 75 points total, distributed unevenly among 6 questions (all of which have multiple parts).

Question Max Grade
1 12
2 9
3 4
4 15
5 25
6 10

Total 75

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. (12 points)

What does each one of the following commands do?

(a) ls ~/hw2/ >> documents

(b) cat my-file | less

(c) mv mytaxes*200[0-4]* old-tax-documents/

(d) wc -l *.html | sort -n | head -n 1

Assume that wc -l *.html by itself produces the following output:

624 course_dictionary.html
25 grades.html
28 index.html
65 mainpage.html
166 overview.html
31 resources.html
204 schedule.html
1745 total

2

Name:

2. (9 points) For each of the following, give a regular expression suitable for grep (or egrep) that
matches the lines described:

(a) Lines that contain the letters a, b, and c, in that order, with at most one character between
consecutive letters. For example, abc would match, so would axbxc, but axxbxxc would not.

(b) Lines that start with the word dog and end with the word cat.

(c) Lines that contain a floating point number. The number must have a decimal point and at least
one digit before and one digit after the decimal point.

3

Name:

3. (4 points) Explain what the following sed command does. Read the command carefully.

sed -e ’s/dog/cat/’ -e ’s/puppie/kitten/g’ animals.txt

4

Name:

4. (15 points) Explain the behavior of the bash script below. Do not explain how it works, just the
effects that a user of the script will see.

Reminders:

• $@ refers to the list of command line arguments starting with $1.

• date prints the current date.

• [-d name] tests if a file name is a directory.

#!/bin/bash

if [$# -lt 2]
then

echo "usage: ‘basename $0‘ output_file dir1 dir2 ... dirn" >&2
exit 1

fi

output_file=$1
echo "Snapshot as of ‘date‘" > $output_file

for arg in $@
do

if [-d $arg]
then

for i in ${arg}/*.{c,h}
do

new="${i}.back"
echo "$i $new" >> $output_file
cp $i $new

done

fi

done

5

Name:
[Problem 4 continued]

6

Name:

5. (25 points)

(a) Indicate the output of the program using the provided blanks.

#include <stdio.h>

#define SIZE 100

int main() {

int array[SIZE];
int i;
for (i = 0; i < SIZE; i++) {

array[i] = i;
}

int *p1;
int *p2;

p1 = &array[1];
p2 = array + 4;
printf("%d %d\n", *p1, *p2); // Output: _______________

p2 = p1;
*p2 = 25;
printf("%d %d\n", *p1, *p2); // Output: _______________

int **pp1;
int **pp2;

pp1 = &p1;
pp2 = &p2;

*pp2 = p1 + 4;
*(*pp1) = 50;
printf("%d %d\n", *p1, *p2); // Output: _______________

return 0;
}

7

Name:
[Problem 5a continued]

8

Name:

(b) Next to each sequence of instructions, indicate if it is correct or if there is a bug. If there is a
bug, say what the problem is:

// Sequence 1
int *p1 = (int *)malloc(sizeof(int));
int *p2 = p1;
*p1 = 10;
free(p2);
p1 = NULL;
p2 = NULL;

// Sequence 2
int *p1 = (int *)malloc(sizeof(int));
int *p2 = p1;
*p1 = 10;
free(p1);
free(p2);
p1 = NULL;
p2 = NULL;

// Sequence 3
int *p1 = (int *)malloc(sizeof(int));
int *p2 = (int *)malloc(sizeof(int));
*p1 = 10;
free(p1);
free(p2);
p1 = NULL;
p2 = NULL;

// Sequence 4
int *p1 = (int *)malloc(sizeof(int));
int *p2 = (int *)malloc(sizeof(int));
p1 = p2;
free(p1);
p1 = NULL;
p2 = NULL;

9

Name:
[Problem 5b continued]

10

Name:

6. (10 points) Indicate the output of the program using the provided blanks. Warning: be careful!

#include <stdio.h>

#define INCR 2

#define PRINT(x) printf("%d\n", x)

#define COMPUTE(x) (x * x + INCR)

int compute(int x) {

return (x * x + INCR);

}

int main() {

int a = 2;
int b = 3;

PRINT(compute(a)); // Output is: ___________

PRINT(COMPUTE(a)); // Output is: ___________

PRINT(compute(a+b)); // Output is: ___________

PRINT(COMPUTE(a+b)); // Output is: ___________

return 0;

}

11

