CSE 373: Graphs
(Shortest Paths, Minimum Spanning Trees)

Chapter 9

Weighted Shortest Paths

* Breadth-first search is no longer sufficient:

* New strategy?




Dijkstra’s Algorithm

Dijkstra’s Algorithm:

— Classic algorithm for solving shortest path
problems for weighted graphs

— A greedy algorithm (makes decisions without
thinking about the future consequences)

— Intuition:
¢ shortest path from source vertex to itself is 0
¢ cost of going to its adjacent nodes equals edge weights
¢ cheapest edge weight is shortest path to that node
¢ continue recursively picking cheapest reachable node

Implementing Dijkstra’s Algorithm

More precisely:
— keep track of the cost of the shortest path found so
tar from s to each vertex...
¢ initialize this cost to o« for all vertices
* except s for which it is initialized to 0
— take the vertex with the shortest path found so far,
v, and mark it as “done”
— for each node w adjacent to v, consider whether
moving to w after taking the short path from s to v
would be better than the best seen so far

— repeat until all vertices are “done”




Dijkstra’s Algorithm: Example

done Running Time?

IOTMOO >

Minimum Spanning Trees

spanning tree: a subset of edges from a connected
graph that..

...touch all vertices (span the graph)
...form a tree (are connected and form no cycles)

/I/ J

minimum spanning tree: the spanning tree with
the smallest total cost




Prim’s Algorithm

Prim’s Algorithm: (another greedy algorithm)
— a way of finding minimum spanning trees:
¢ start with an arbitrary vertex
¢ pick the smallest edge adjacent to this vertex

¢ continue picking the smallest edge that connects a new
vertex to a vertex that’s already been linked in

Prim’s Algorithm Implementation

More precisely:
— for each vertex, keep track of the cheapest edge that
could attach it to the growing tree
¢ initialize all nodes to o
— pick an arbitrary vertex as the initial tree
¢ mark its cost as 0
— update its adjacent vertices’ cheapest edge cost
— pick the cheapest edge that attaches a new vertex

— see if any of its edges improve the cheapest edges of
its adjacent vertices




Prim’s Algorithm Example

done

A

B

C

D

E

F

G

H

Kruskal’s Algorithm

Kruskal’s Algorithm:

— Another way to find minimum spanning trees
— Another greedy algorithm:

¢ continually add the cheapest edge that would not cause
a cycle to form

R |




Implementing Kruskal’s Algorithm

* How to pick shortest edges?

* How to ensure an edge won't cause a cycle?

— use a union/find algorithm (described in Chapter §,
which we skipped...)

Graph Summary

e More theoretical than much of what we’ve
studied

* Yet, plenty of practical applications:
— cheapest flights from one place to another (shortest
path problem)
— length of wire required to connect several terminals
(minimum spanning tree problem)
— fastest communication path between two
computers (shortest path problem)




