CSE 373: Sorting
(Quicksort, Quickselect, Bucketsort)

Chapter 7

Quicksort
Quicksort:
— Another recursive divide-and-conquer sorting
algorithm

— In practice, the fastest known sorting algorithm

Partitioning

Partitioning: Quicksort’s main operation
— given a list...
— choose a pivot element, p, from the list

— divide the rest of the values into two sets:
¢ those less than p
¢ those greater than p
¢ (for now, we'll ignore those that are equal to p)

Partitioning Example

(Assume we’ll use the first element as a pivot):

[7[af8l6]o]2[5]3]

[]

Running time of partition?

Quicksort Overview

Quicksort: given a list of values...
— if the list contains zero or one elements, return it
— otherwise, partition the list
— call Quicksort recursively on each half

— concatenate the results of the recursive calls:
Quicksort(small values) :: pivot :: Quicksort(big values)

Quicksort Example

S
=
s
S
Il
N
o
@®
o
0
N
ot
W

(using first element as p1vot)

8
8
8

~

Quicksort Call Tree

Quicksort(7,4,8,6,9,2,5,3)

Qui cksort (4,6, 2,5,3) Qui cksort(8,9)
&(3) &(5)

Running Time (Approximate & Optimistic)

Assuming all pivots result in even partitions...

~i
inear work per step
e ~
(NN EEEEEEEEEEEE
ITTTTOdTTTTTT1
~logn steps < MO aOraTT1d

o o

. OCOCOooOocOoooocdo
= O(n) x O(logn) = O(nlogn)

Worst-Case Analysis

* What would be a worst-case partition step?

* What input would cause this worst case at
every step (assuming pivot is first element)?

* What's the running time of this worst-case?

Design Decision: Choosing Pivot

first element — should never, never be used

random element

median

median of three (first, middle, last?)

middle element

In-Place Partitioning

1) swap the pivot p with the last element

2) set a pointer i to the first element

3) set a second pointer j to the second-to-last

4) walk 7 up the array until a value > p is found
5) walk j down the array to a value < p

6) swap elements pointed to by i and j

7) continue until 7 and j pass one another

8) when they do, swap i’s element with p

In-Place Partitioning Example

7,

N
oo
o

\O
N N ~
N
~
U1
~

S.
=
=
4
Il
W
=
92}
=
aQ
=
o
Q.
=
job]
7
Q
i
5

ree pivot)

Quicksort Best-Case Analysis

Use a recurrence relation:
TO)=k
T =k
Tm)=2T(n/2) + cln

Solve using repeated substitution:

Quicksort Overview

® Running Times:
— Best Case: O(nlogn)
— Worst Case: O(n?) — but very unlikely
— Average Case: O(nlogn) — shown in book

* Space Requirement: sorts in-place

Design Details

* Sort small arrays (n < 20?) using insertion sort
— insertion sort faster for small problems
— all Quicksorts on big lists must also sort small lists

* How to handle elements equal to pivot?
— annoying detail; see book

® Quickselect —a modification of Quicksort to do
selection in O(n) time (on average)

Bucketsort

Useful for sorting integers of a fixed range:
— Declare an array: i nt count [r ange]
— Initialize count [] toall 0’s
— Iterate over the input list
— For each value v, increment count [v]
— Once done, print out count [0] 0’s, count [1] 1’s,
...,count[i] i'setc.

Running time?

