CSE 373: Sorting
(Shellsort, Heapsort, and Mergesort)

Chapter 7

Drawback of Adjacent Swap Sorts

* Each swap only fixes a single inversion

® Thus, elements that are far out of place must
be swapped with many values instead of being
moved into place more directly:

4 5 7 8 9 2

* This is the motivation for Shellsort (named after
its inventor, Donald Shell): try to move values to
their general area quickly, then fix them up

Shellsort

* Uses p phases

* The phases are characterized by an increment
sequence of integers: hy, hy, hs, ..., hp:
— Typically, h; > h;,4
— h, =1 (last phase is insertion sort)
* In phase k, we compare and swap values that

are h; positions apart until they are sorted

* This essentially performs /, independent
insertion sorts in phase k

Shellsort Example

=
Il
N
&
N
—_
S
=
=
o~
Il
N
G
N
&
NS
N
N

BERRRRE
ol e o]l
sl olelefelele
olalalolo]olo
BERBREE
EEEERER
BEEREEIEE -
olelelelalo]e

Increment Sequences

* Designing increment sequences:

— Running time is proportional to the number of
increments, so we don’t want too many

— But just having one would give us insertion sort

* Worst-case running time:
3. (h; (n/h)?): h; insertion sorts of n/h; elements each;
(recall: insertion sort has worst-case of O(1?))

Common Increment Sequences

* Shell’s original sequence:
h=n/2,n/4,n/8,...,2,1

¢ probably the most intuitive sequence
¢ but, it has a worst-case of O(n?)

e Hibbard’s sequence:
h=2%1,...,15,7,3,1
¢ adjacent numbers are relatively prime
¢ leads to a worst-case of O(n'5)

Heapsort

* Naive algorithm:
— Run bui | dHeap() on the input array

— Call del et eM n() n times, storing the results in an
output array

] Running Time?
* Disadvantage?

e How can we fix this?

Heapsort Example

input: 7 4 9 5 8 2

(7) bui | dHeap() del et eM n()
— ——
5 ©® O

oo

output: | | | [[|1

Improved Heapsort

* Use the heap’s array to store the sorted values

® Recall: a k-element heap uses the first k
positions of its implementing array

¢ Thus, whenever we delete an element from the
heap, store it at the end of the array

* What does this give us?

e How to fix it?

Treesort?

* BSTs can obviously be used to sort input
—insert() all values
— traverse tree in-order, copying to output array

* This is rarely done in practice (unless a tree is
already being used to store the data)
— asymptotically similar to Heapsort
— but trees require more memory
— and can’t be done using only input array memory
— might as well use Heapsort

The Merge Operation

e Given two sorted lists, mer ge() combines
them into a single sorted list:

4161718 213]5|9

* Running time of ner ge() ?

Mergesort

Elegant recursive sorting algorithm:
— if the input is one element, it’s sorted; return
— otherwise, split the input into two equal-sized lists
— call Mer gesort () recursively on each list
— mer ge() the sorted lists that are returned

Mergesort Example
(S IS IR I IS o HE o IS IS IR o I IS TS o I IR s BN

input=7,4,8,6,9,2,5,3

HE O OEEHEEA

ﬂﬂﬂ

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Mergesort Call Tree

I I I e I I I I o I 2 e I I T I o 2 I o 2 hN
Mergesort(7,4,8,6,9,2,5,3)

Mer gesort (7, 4, 8, 6) Mergesort (9, 2,5, 3)

MS(7) Ms(4) MS(8) MB(6) MB(9) MB(2) MS(5) M5(3)

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Binary Search Running Time

constant work per step
A

~ ~

((T ITTTTTTITTT1T1TT]
CITTTTITT11]
logn steps < TT1T11
[
\ O

= O(1) x O(logn) = O(logn)

Mergesort Running Time

logn steps <

linear work per step
A
e ~
(NN EEEEEEEEEEEE

\OOOOO0O00000o0o00omno
= O(n) x O(logn) = O(nlogn)

Disadvantages?

