CSE 373: Selection & Simple Sorting

Selection: bits of Chapters 1, 4, 6, 7
Simple Sorting: Chapter 7

The Selection Problem

Goal: Given a list of n numbers, find the kth
smallest

Special Cases:
k=1:fi ndM n()
k=mn:findVMax()
k = n/2: the median of the list

Any ideas?




Selection Brainstorming

Which of the data structures that we’ve studied

would be appropriate for selection?
List
Stack
Queue
Tree
BST
Hash Table
Heap

— must be able to store data

— must maintain some sort of ordering information

List-Based Selection

Naive algorithm:

— Insert each element into a second list using
i nsert Sorted()

— Return the element in the kth position
— Running time?

Slightly improved algorithm:
— Store only the k smallest elements seen so far
— Running time?




Tree-Based Selection

Naive Algorithm:
—insert() all elementsinto a BST
— Traverse the tree using an in-order traversal
— Count off until we reach the k" element
— Running time?

Improved Algorithm?

Heap-Based Selection

Naive Algorithm:
— bui | dHeap() all elements into a min-heap
— Perform del et eM n()) k-1 times
— The next del et eM n() returns the target value
— Running time?

Improved Algorithm?




Relating Selection and Sorting

If we were to do selections fork=1, 2, ..., n, we
would end up with a sorted list
— Running time?

Alternatively, if we were to sort our input list,
we could do any selection in O(1) time
— Running time?

Motivation for Sorting

* Sorted arrays allow us to do binary searches
* They also allow us to do fast selection

® The mode could be computed trivially in O(n)
time if the input was sorted

(but perhaps most importantly...)
* Humans tend to like things in sorted order

How could we use our data structures to sort?
Which would be appropriate? Efficient?




Introduction to Sorting

Sorting: One of the most fundamental algorithms
Input: An array A[] of values and its size, n.

Output: The array stored in sorted order:
ifi<jthen A[i] < A[j], Ui, j<n

Goals: sort as quickly as possible
ideally, use O(1) memory (other than A[])
handle pre-sorted lists quickly

Insertion Sort

Insertion Sort: One of the simplest sorting
algorithms, based on List ADT i nsert ().

— n-1 passes
— after pass i, elements 0..i will be in sorted order

— in pass i, we ripple the ith element down the array
until it’s sorted (with respect to elements 0..i-1)




Insertion Sort Example

_position: 0 1 2 3 4

input:

pass 1:
pass 2:
pass 3:
pass 4:
pass 5:

7 4 9 5 8

Insertion Sort Analysis

* Why ripple down rather than up?

* Best case input? Running time?

* Worst case input? Running time?




Adjacent Swap Algorithms

A class of algorithms that sort simply by
comparing and swapping adjacent elements
— Insertion Sort
— Bubble Sort
— Selection Sort

Inversions

* Given A[], an inversion is a pair (i,j) such that
i <j,but Ali] > A[jl.
— How many inversions in our example?
7 4 9 5 8 2

® The number of inversions in A[] equals the
number of adjacent swaps required to sort it
— Why?




Average Case Analysis

(Q: What is the average number of inversions in a
random input array?

A: Consider an arbitrary list L with n unique values
Consider the reversal of the list Ly
Every pair (i,j) represents an inversion in L or in Ly
The total number of distinct (i,j) pairs is n(n-1)/2
On average, half of these will be in L, half will be in Ly
Thus, the average array has n(n-1)/4 inversions
So, adjacent swap algorithms run in ©(1?) on average




