CSE 373: The ADT Toolbox

Miscellaneous

What We’ve Done

Up to this point, we've looked at a variety of
fundamental data structures, each with its own
unique strengths and limitations:

List: general-purpose storage
Stack: FIFO ordering

Queue: LIFO ordering

Tree: hierarchical organization
BST: searchable storage

Hash Table: quick storage
Heap: quick location of minimum

The Toolbox

* These data structures are not the only ones
you'll ever use or need

e Rather, think of them as a basis set from which
you can build other data structures

— by mixing multiple data structures
— by adding additional functionality

— by relaxing the “pure” version of the data structure

Mixing Data Structures

As we saw on day one, C’s arrays and structures
can be mixed and matched:

array of arrays array of structures

structure of arrays structure of structures

More Mixing Data Structures

This same thing can be done for all the data
structures we’ve used in this class:

(" List 0 (" Lists
Stack Stacks
Queue Queues
a...< Tree > ...0f...< Trees
BST BSTs
Hash Table Hash Tables
_ Heap Y, \. Heaps

— The Basil interpreter was a simple example of this
(hash table of structs of trees...)

Adding Additional Functionality

In addition to the usual implementation of the
data structure, add some more information

e.g., maze-solving example:

¢ most people kept a list of the moves they made to get to
their current position

* once the goal was found, you could iterate over this list
to find out its length (and if it was the shortest path)

* OR you could add a new field (inside or outside the
List ADT) that would keep the length as the list grew

¢ though this doesn’t change the algorithm
asymptotically (this part of it is still O(n)), it may
improve elegance

Relaxing the “Pure” ADT

We’ve already seen several examples of this:

7 £

— Microsoft’s “recent documents list” is queue-like
¢ but it only holds n elements at a time (breaks arbitrary
size property)
¢ if an document in the queue is accessed, it is removed
and re-inserted at the back (breaks LIFO property)

— Avoiding some operators can change properties

e findM n/findMax cheap on hash table if no deletes
— Iteration over hash tables can be useful

¢ to implement a general f i ndM n/f i ndMax, e.g.

Application: Min/Max Heap

I'd like a heap that supports both del et eM n()
and del et eMax() efficiently

How could I do this?

Application: Multi-sorted List

It's easy to imagine writing a List ADT that
always inserts data in sorted order

What if I wanted to have a list “sorted” by all of
its fields?

e.g., I'd like to print it out sorted by last name, by first
name, by student ID, by grade, etc.

Sample Application: UW Registry

Our naive implementation was to declare an
array of size # students x # classes

— this used way too much memory for the complexity
of data we were storing

— we oversimplified “indexing by UWID” since they

What else could we do?

Next Assignment: Sparse Arrays

Sparse Array: an array in which most values are
identical

— thus, it is better to store only those values that differ
— a single copy of the unrepresented value (URV) is
stored
Examples:

— UW registry (most students are not taking most
classes)

— Many scientific computations/simulations

Sample Sparse Array Operations

(We'll be doing Sparse 2D arrays...)

* Main operations:

Cbj ect Read(i,]) —return the value at (i) if it’s stored,
the unrepresented value otherwise

void Store(i,],Qbject) —store val at index (if); stop
storing a value for that position if val == the URV

e Jterators: allow the user to iterate over the data
by row or column

* 1/O: support read /write of sparse arrays

