CSE 373: Heaps
(applications)

Chapter 6

Resource Management

Many of today’s examples will examine how resources
can be shared between multiple users
- fairly...
— without wasting the resources...

This is a complex issue and it gets a great deal of study
(queuing theory; operating systems)

Q: How well do you need to understand this?
A: Well enough to understand why we might use heaps
(i.e., pay attention and “get it,” but don’t freak)

Application 1: Printer Queue

(Note: Most printer queues are actually FIFO)

The idea:
— you submit your document to the printer queue
— eventually, it gets its turn and prints out
— afterwards, the job is dropped (not needed again)
Imaginary Queue Policy:

— shorter print jobs should always print before longer
ones (we’ll measure length by # pages)

— jobs with equal length should print in FIFO order

This looks like a job for a Heap!

printer idle?

.......
. .

e ,..Del eteM n()
printer
while (1) {
if (!printing) {
Print (Del et eM n(Print Heap)) ; I
} H
}

user prints

Q: How can we convert our policy to a | nsert ()

numerical priority?

Printer Priority Scheme

Proposal: Priority = 1000 x (# pages) + counter
1) AJ prints a 2-page document
2) Brad prints a 30-page document
3) Sun Liang prints a 1-page document
4) AJ prints a 1-page document
5) Sun Liang prints a 1-page document

Problems with this scheme?

Why do people use FIFO?

Application 2: NQS

NQS: Network Queuing System

How it works:
— A supercomputer has 256 processors that can be used to run
programs
— To use the computer, you must submit your program to NQS

— When submitting a program, you request a number of
processors & an amount of time (e.g., 8 processors for 1 hour)

— Eventually, NQS will assign your job to a set of processors
according to your request

— if your job doesn’t complete in the time you requested, it is
killed so that other programs may use the processors

— if it does complete in time, it’s dropped

FIFO Queue Approach

For simplicity, we could just use a FIFO queue...

1) AJ submits a 32-processor, 20-minute job

2) Brad submits a 256-processor, 8-hour job

3) Sun Liang submits a 16-processor, 10-minute job
4) AJ submits an 8-processor, 25 minute job

5) Sun Liang submits an 8-processor, 15-minute job
6) AJ] submits a 128-processor, 5 minute job

What's the problem with using FIFO in this example?

FIFO visualization

time 0 10 20 30 40 5‘0 6‘0..
I

o Tl I

I« Sun Liang

I .

$.4085300.4d

256 —

A Better Schedule

time 0 10 20 30 40 50 60..
0 Lol

'Illllllll

“Smallest Job First” Heap

Proposal: priority = job size
job size = # processors x requested time (in minutes)

What's the problem with always running the
“smallest” job first?

What's the solution?

Application 3: Sharing a CPU

The idea:

all computers have a CPU (e.g., Pentium-II) that can only run
one program at a time

to make it seem like many programs are running at once, the
CPU takes turns running each for a short time (a quantum)

some programs are more important than others and have
higher priority

programs waiting to be run can be kept on a heap

CPU uses del et eMax() to find the most important program
if the program blocks while running, it’s put on a waiting list
otherwise, once the quantum is up, itis re-i nsert () ed

Shared CPU: Diagram

.............................. CPU idle?
- “.. del et eMax()

quantum expired?

program blocked? .- w.insert()
insert(); Tt
A e .“v
waiting list |A | | | | | | o
(waiting for: data from ..
disk? user to type e
something? memory?) program unblocked?

insert ()

Shared CPU: Priorities

* User may select an initial priority

* Operating System may adjust priority if
program hogs CPU or never gets to run

* What if we have multiple programs with the

same (lowest) priority?
2 lowest:

3 Programs, Same Priority

3 lowest:

what next?

CPU Scheduling

* Tough problem
— fairness vs. priority
— must avoid starving processes

¢ Could modify priority based on lots of stuff:
— how much a program has run vs. waited
— how long it’s been in the queue
— etc.

* But...it’s unclear (to me) whether a Priority
Queue is really the best way to go...

Application 4: Simulations

Q: Let’s say we've designed a policy for any one of these
applications. How could we evaluate it?

A: Could simulate an artificial workload:
— set up a time scale (seconds, milliseconds, etc.)
— keep track of events. For example:
* ajob is submitted to NQS
* ajob starts running
* ajob finishes running

— submission time and running time are set (randomly?) by the
workload

- starting and finishing times depend on our scheduling policy

Simulations: Continued

* Could simulate time tick-by-tick:
while (1) {
time++;
for (job=0;job<nunjobs;job++) {
CheckFor Event (j ob, tine);

}
}

— inefficient, since there are more ticks than events

* Instead, keep a priority queue of events where
events are prioritized by time
— del et eM n() will give us the next event

Simulations

sample workload:
¢ at t=0, AJ submits 32-proc, 20-min job
¢ at t=10, Brad submits a 256-proc, 8-hour job
¢ at t=20, Sun Liang submits a 16-proc, 10-min job
¢ at t=30, AJ submits an 8-proc, 25-min job

next event is AJ’s
submission;

o
policy says we

should run AJ’s job

at t=1 etc.

