CSE 373: Heaps
(other operations and variations)

Chapter 6

Heaps: Quick Recap

Heaps:
— structure is a complete binary tree
— each node must be smaller than its descendants

— main operations are i nsert () and del eteM n()
— heaps have a compact array-based representation

Other Operations: decr easeKey/()

decr easeKey() —lowers a node’s value
(while preserving heap ordering)

decr easeKey() - Continued

running time?

| ncreaseKey()

| ncr easeKey() —raises a node’s value
H. i ncreaseKey(<.6);

| ncr easeKey() — Continued

running time?

del et e()

del et e() —removes a node from the heap
H. del et e(

del et e() — Continued

running time?

Let’s Write a Heap Routine...

bui | dHeap()

bui | dHeap() — creates a heap from an array

[12[5{11]3]10] 6 [9[4a[8]1]7]2]

Straightforward Implementation: i nsert ()
elements into an empty heap one at a time

running time?

bui | dHeap() - Continued

Better Implementation: Treat input array as a heap
and “percolate down” first nn/2 values

[12[5 [11[3 J10] 6 [9[a[8]1]7]2]

running time?

bui | dHeap() - even more

bui | dHeap() running time

MaxHeaps

MaxHeaps: the dual of the Heaps we’ve defined
— support fasti nsert () and del et eMax() ops
— work exactly the same as (Min)Heaps

Why is del et eMax() expensive on a normal
minheap?
What's the running time?

d-Heaps

d-Heaps: Just like normal heaps but with d
children rather than 2

Intuition: tree will be shallower so ops will be faster

However...
— more comparisons need to be made when percolating down
- finding parent/children may be slower

What about asymptotic running time?

Bottom Line: 4-heaps may outperform 2-heaps

Merging Heaps

How to merge heaps effectively?
Straightforward method: copy both arrays into a single
array and use bui | dHeap()

running time?

Advanced methods:

— pointer-based imbalanced heaps
o leftist heaps — a bit like AVL trees; O(log 1) merge
o skew heaps — like Splay trees; O(log n) amortized ops
¢ binomial queues — O(log n) merge, but ~O(1) insert

