CSE 373: Hash Tables
(applications & collisions)

Chapter 5

Hash Table Sets: Use

Hash tables can be used to store sets
e.g., the set of all departments represented in CSE 373

typedef enum { ACVM5, ECON, EE, MATH, ..} dept;
HashTabl e<dept > D,

Approach: Just store the departments themselves
in the hash table:
— to add a new department, i nsert () it
— to see if a department is represented, f i nd() it

Hash Table Sets: Implementation

Data Structure:
tenpl ate <cl ass Hashedj >
class HashTabl e {
private:
int tabl esize;
Hashedoj * dat a;
b
Sample Operation:
HashTabl e: : i nsert (Hashedoj & key)
¢ hash key to get an index, I
¢ check whether data[I] is empty (or already storing key)
¢ if 50, set data[l] = key
¢ otherwise deal with the conflict

Hashing Records

Goal: store the CSE 373 class list as a Hash Table
cl ass student {
nanme first, |ast;
int UWD,
nane email ;
dept mgj or;
int year;
b
Implementation:

Use a hash table of students rather than departments:
HashTabl e<st udent > st udent Set ;

Hashing Records: Design Decisions

Design Decisions:
What to hash on?

¢ last name?

¢ first name?

¢ student ID?

* email?

¢ some combination thereof?
How to look someone up?

¢ supply entire record?

¢ supply just a single field?

Food For Thought

Question: How to implement a simple database?

Goals:
— store records as in class list example
— be able to search based on any field
— minimize space requirements

Load Factor

Load Factor: Density of hash table, A

A = # of stored elements /table size

EE

IMATH]

ACMS

A=3/7

Ideally, we’d like A =1.0

Dealing with Collisions

What can we do when two keys hash to the same

slot?

D.insert(

hash(EE) = 2

EE)

EE

D. i nsert (ACVB)

hash(ACMS) = 5

EE

ACMS

hash (SPAN)=2

D. i nsert (SPAN)

T

ACMS

Solution: Separate Chaining

Idea: At each position, store a list of the keys that
hash to that position

-

LSPANT J-[B8 TN

[ACMS[\]

2 I Ve W

Separate Chaining: Implementation

tenpl ate <cl ass Hashedj >
cl ass HashTabl e {
private:
int tabl esize;
Li st <Hashednj >* datali st;
b
HashTabl e: : i nsert (Hashedoj & key)
¢ hashkey (i = hash(key))
¢ seeif keyis already inlist (datal i st[i].find(key))
¢ if not, insert into the list (dat al i st[i]. i nsert (key))

(Note that we could replace lists with BSTs, hash tables)

Solution 2: Rehashing

Grow the size of the hash table as it gets full

But when?
— whenever there is a collision?
— whenever A reaches 1.0?
— whenever A reaches k?
— whenever n% of the slots are in use?

Can we simply resize the data array and copy
values over as we did with lists and stacks?

Running Time of Rehashing

Assume that we’ll rehash whenever A = 1.0...
— starting with an array of size 11

— approximately doubling the size of the array
(use the next prime larger than 2 x tablesize)

— what is the total running time of inserting n keys?

Solution 3: Open Addressing

Goal: Use available space in table to store
collisions rather than lists or resizing
— linear probing
— quadratic probing
— double hashing

Linear Probing

If there’s a collision, insert data in next blank slot:

D. i nsert (SPAN) D. i nsert (MATH)
EE EE EE
hash (SPAN)=2 | SPAN hash(MATH)=2 [SPAN
IMATH|
ACMS ACMS ACMS

Note that if there is an open slot in the table, linear probing
will always find it (eventually)

Finding, Deleting w/ Linear Probing

D. fi nd(SPAN) D. r enove(SPAN) D. fi nd(MATH)

EE EE EE
SPAN hash (SPAN)=2 hash(MATH)=2
MATH| MATH| MATH,|
ACMS ACMS ACMS

Primary Clustering

Linear probing has the tendency to result in
clusters of data in the table
— increases search time for values hashing to that area

EE
SPAN
NATE cluster
ACMS

Open Addressing Requirements

¢ The selection of alternate slots must be
recomputable and deterministic
— so that we canfi nd() data that we've inserted
* Deletion from the table must be “lazy”
— similar to binary search trees
— don’t remove data, simply mark it as being deleted

Open Addressing: General Form

Open addressing is generally expressed as:
(hash(key) + f(i)) mod tablesize, fori=0, 1, 2, ...

The hashing procedure is therefore:
1) Try (hash(key) + f(0)) mod tablesize
2) If it’s full, try (hash(key) + f(1)) mod tablesize
3) Continue until you find an empty slot

Design decision: what to use for f()?
— Linear probing uses f(i) = i

Quadratic Probing

Uses f(i) = i

EE

ACMS

D. i nsert (SPAN)

hash (SPAN)=2

EE

ACMS

D. i nsert (MATH)

EE

hash(MATH)=2

ACMS

Quadratic Probing: Evaluation

* Intuition: spreads things out more, so primary
clustering should not be as much of a problem

* It can be proven that quadratic probing is
guaranteed to find a free slot if...

— number of slots is prime
— table is less than half full

— (therefore, resize when A = (.5)

10

Double Hashing

(i) = ilhash,(key)

Intuition: since good hash functions result in
tairly random distributions, this spreads
values out in a less predictable pattern

Quadratic Probing

Uses f(i) = i

EE

ACMS

D. i nsert (SPAN)

hash (SPAN)=2
hash, (SPAN)=5

EE

ACMS

D. i nsert (MATH)

EE

hash(MATH)=2

hash, (MATH)=

ACMS

11

Applications: Compilers

Compilers use hash tables to store information

about all user-defined identifiers

symboltable

“getname”

function

no parameters

int i; no return type
List<int> nylist; “mylist” vars: |
variable
i Class:
voi d getnane() { :
|temiplate: int
char nane[20] ; — P I—
HT 3?7 o] ”i” Uai’lable
} List variable array
class integer | |basetype: char
Applications: Al

* Create a hash function for a game’s “position”

* Store “good moves” from each position as they

are discovered

* While playing, can quickly check if there is a
known good move from the current position

12

